A Volumetric Approach to Biased Estimation: Demonstration on Shrinkage Estimators

被引:0
|
作者
Bikcora, Can [1 ]
Weiland, Siep [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Admissibility; biased estimation; domination; mean-squared error; parameter estimation; MSE IMPROVEMENT; UNCERTAINTIES; PARAMETERS; ERROR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work proposes a new approach, named as the volumetric design (VD), of developing biased estimators of deterministic parameters that are known in advance to belong to a compact subset in the parameter space. For analytical tractability, this approach is demonstrated on the choice of the shrinkage parameter of an estimator that scales the celebrated minimum variance unbiased estimator (MVUE) towards zero, where a spherical set is taken as the a priori knowledge on the parameters and the mean-squared error is adopted as the performance measure. Similar to the existing methods of the minimax (MX) and the deepest minimum criterion (DMC) estimators, the VD estimator also belongs to the class of admissible estimators that dominate the MVUE on the provided parameter (spherical) set. However, as its fundamental difference, it corresponds to the estimator that has the largest total relative volume on which it dominates the other estimators in this class, thereby achieving the best volumetric robustness in this manner.
引用
收藏
页码:642 / 646
页数:5
相关论文
共 50 条
  • [21] Shrinkage Estimators for Uplift Regression
    Rudas, Krzysztof
    Jaroszewicz, Szymon
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 11906 : 607 - 623
  • [22] The risk of pretest and shrinkage estimators
    Nkurunziza, Severien
    STATISTICS, 2012, 46 (03) : 305 - 312
  • [23] Shrinkage Estimators in Online Experiments
    Dimmery, Drew
    Bakshy, Eytan
    Sehkon, Jasjeet
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2914 - 2922
  • [24] Shrinkage estimators for covariance matrices
    Daniels, MJ
    Kass, RE
    BIOMETRICS, 2001, 57 (04) : 1173 - 1184
  • [25] SHRINKAGE ESTIMATORS OF RELATIVE POTENCY
    KIM, PT
    CARTER, EM
    HUBERT, JJ
    HAND, KJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) : 615 - 621
  • [26] Kernel mean shrinkage estimators
    1600, Microtome Publishing (17):
  • [27] DOUBLE BOOTSTRAP FOR SHRINKAGE ESTIMATORS
    VINOD, HD
    JOURNAL OF ECONOMETRICS, 1995, 68 (02) : 287 - 302
  • [28] COMBINING MINIMAX SHRINKAGE ESTIMATORS
    GEORGE, EI
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (394) : 437 - 445
  • [29] Shrinkage estimators for periodic autoregressions
    Paap, Richard
    Franses, Philip Hans
    JOURNAL OF ECONOMETRICS, 2025, 247
  • [30] Biased Estimators on Quotient Spaces
    Miolane, Nina
    Pennec, Xavier
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 130 - 139