A nonparametric dynamic additive regression model for longitudinal data

被引:3
|
作者
Martinussen, T
Scheike, TH
机构
[1] Royal Vet & Agr Univ, Dept Math & Phys, DK-1871 Frederiksberg C, Denmark
[2] Univ Copenhagen, Dept Biostat, DK-2200 Copenhagen N, Denmark
来源
ANNALS OF STATISTICS | 2000年 / 28卷 / 04期
关键词
dynamic linear models; estimating equations; least squares; longitudinal data; nonparametric methods; partly conditional mean models; time-varying-coefficient models;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work we study additive dynamic regression models for longitudinal data. These models provide a flexible and nonparametric method for investigating the time-dynamics of longitudinal data. The methodology is aimed at data where measurements are recorded at random time points. We model the conditional mean of responses given the full internal history and possibly time-varying covariates. We derive the asymptotic distribution for a new nonparametric least squares estimator of the cumulative time-varying regression functions. Based on the asymptotic results, confidence bands may be computed and inference about time-varying coefficients may be drawn. We propose two estimators of the cumulative regression function. One estimator that involves smoothing and one that does not. The latter, however, has twice the variance as the smoothing based estimator. Goodness of fit of the model is considered using martingale residuals. Finally, we also discuss how partly-conditional mean models in which the mean of the response is regressed onto selected time-varying covariates may be analysed in the same framework. We apply the methods to longitudinal data on height development for cystic fibrosis patients.
引用
收藏
页码:1000 / 1025
页数:26
相关论文
共 50 条
  • [11] Nonparametric longitudinal regression model to analyze shape data using the Procrustes rotation
    Meisam Moghimbeygi
    Mousa Golalizadeh
    [J]. Journal of the Korean Statistical Society, 2024, 53 : 169 - 188
  • [12] Nonparametric longitudinal regression model to analyze shape data using the Procrustes rotation
    Moghimbeygi, Meisam
    Golalizadeh, Mousa
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024, 53 (01) : 169 - 188
  • [13] Fast Bayesian model assessment for nonparametric additive regression
    Curtis, S. McKay
    Banerjee, Sayantan
    Ghosal, Subhashis
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 347 - 358
  • [14] Nonparametric estimation in a regression model with additive and multiplicative noise
    Chesneau, Christophe
    El Kolei, Salima
    Kou, Junke
    Navarro, Fabien
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 380
  • [15] Semiparametric and nonparametric regression analysis of longitudinal data - Comment
    Wang, MC
    Chen, YQ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 113 - 114
  • [16] Simultaneous nonparametric regression analysis of sparse longitudinal data
    Cao, Hongyuan
    Liu, Weidong
    Zhou, Zhou
    [J]. BERNOULLI, 2018, 24 (4A) : 3013 - 3038
  • [17] Smoothing splines for nonparametric regression percentile of longitudinal data
    Hu, FC
    Taylor, JGM
    [J]. AMERICAN STATISTICAL ASSOCIATION 1996 PROCEEDINGS OF THE BIOMETRICS SECTION, 1996, : 362 - 362
  • [18] A New Mixed Estimator in Nonparametric Regression for Longitudinal Data
    Octavanny, Made Ayu Dwi
    Budiantara, I. Nyoman
    Kuswanto, Heri
    Rahmawati, Dyah Putri
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [19] Kernel-Spline Estimation of Additive Nonparametric Regression Model
    Hidayat, Rahmat
    Budiantara, I. Nyoman
    Otok, Bambang Widjanarko
    Ratnasari, Vita
    [J]. 9TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE 2019 (BASIC 2019), 2019, 546
  • [20] Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation
    Li, Yehua
    [J]. BIOMETRIKA, 2011, 98 (02) : 355 - 370