Nonparametric longitudinal regression model to analyze shape data using the Procrustes rotation

被引:0
|
作者
Moghimbeygi, Meisam [1 ]
Golalizadeh, Mousa [2 ]
机构
[1] Kharazmi Univ, Fac Math & Comp Sci, Dept Math, Tehran, Iran
[2] Tarbiat Modares Univ, Dept Stat, Tehran, Iran
关键词
Nonparametric inference; Kernel regression; Longitudinal model; Procrustes analysis; Shape analysis; SMOOTHING SPLINES;
D O I
10.1007/s42952-023-00241-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Shape, as an intrinsic concept, can be considered as a source of information in some statistical analysis contexts. For instance, one of the important topics in morphology is to study the shape changes along time. From a topological viewpoint, shape data are points on a particular manifold and so to construct a longitudinal model for treating shape variation is not as trivial as thought. Unlike using the common parametric models to do such a task, we invoke Procrustes analysis in the context of a nonparametric framework and propose a simple, yet useful, model to deal with shape changes. After conveying the problem into the nonparametric regression model, we utilize the weighted least squares method to estimates the related parameters. Also, we illustrate implementing this new model in simulation studies and analyzing two biological data sets. Our proposed model shows its superiority while compared with other counterpart models.
引用
收藏
页码:169 / 188
页数:20
相关论文
共 50 条
  • [1] Nonparametric longitudinal regression model to analyze shape data using the Procrustes rotation
    Meisam Moghimbeygi
    Mousa Golalizadeh
    [J]. Journal of the Korean Statistical Society, 2024, 53 : 169 - 188
  • [2] Nonparametric Regression Modeling of Shape Data Using Ordinary Procrustes Analysis
    Moghimbeygi, Meisam
    Golalizadeh, Mousa
    [J]. 2021 52ND ANNUAL IRANIAN MATHEMATICS CONFERENCE (AIMC), 2021, : 85 - 87
  • [3] A nonparametric dynamic additive regression model for longitudinal data
    Martinussen, T
    Scheike, TH
    [J]. ANNALS OF STATISTICS, 2000, 28 (04): : 1000 - 1025
  • [4] Nonparametric regression analysis of longitudinal data
    Staniswalis, JG
    Lee, JJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (444) : 1403 - 1418
  • [5] NONPARAMETRIC REGRESSION ANALYSIS OF MULTIVARIATE LONGITUDINAL DATA
    Xiang, Dongdong
    Qiu, Peihua
    Pu, Xiaolong
    [J]. STATISTICA SINICA, 2013, 23 (02) : 769 - 789
  • [6] MONOTONE NONPARAMETRIC REGRESSION FOR FUNCTIONAL/LONGITUDINAL DATA
    Chen, Ziqi
    Gao, Qibing
    Fu, Bo
    Zhu, Hongtu
    [J]. STATISTICA SINICA, 2019, 29 (04) : 2229 - 2249
  • [7] Semiparametric and nonparametric regression analysis of longitudinal data
    Lin, DY
    Ying, Z
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 103 - 113
  • [8] A review of nonparametric regression methods for longitudinal data
    Yang, Changxin
    Zhu, Zhongyi
    [J]. STATISTICS AND ITS INTERFACE, 2024, 17 (01) : 127 - 142
  • [9] Semiparametric and nonparametric regression analysis of longitudinal data - Comment
    Wang, MC
    Chen, YQ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 113 - 114
  • [10] Simultaneous nonparametric regression analysis of sparse longitudinal data
    Cao, Hongyuan
    Liu, Weidong
    Zhou, Zhou
    [J]. BERNOULLI, 2018, 24 (4A) : 3013 - 3038