A nonparametric dynamic additive regression model for longitudinal data

被引:3
|
作者
Martinussen, T
Scheike, TH
机构
[1] Royal Vet & Agr Univ, Dept Math & Phys, DK-1871 Frederiksberg C, Denmark
[2] Univ Copenhagen, Dept Biostat, DK-2200 Copenhagen N, Denmark
来源
ANNALS OF STATISTICS | 2000年 / 28卷 / 04期
关键词
dynamic linear models; estimating equations; least squares; longitudinal data; nonparametric methods; partly conditional mean models; time-varying-coefficient models;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work we study additive dynamic regression models for longitudinal data. These models provide a flexible and nonparametric method for investigating the time-dynamics of longitudinal data. The methodology is aimed at data where measurements are recorded at random time points. We model the conditional mean of responses given the full internal history and possibly time-varying covariates. We derive the asymptotic distribution for a new nonparametric least squares estimator of the cumulative time-varying regression functions. Based on the asymptotic results, confidence bands may be computed and inference about time-varying coefficients may be drawn. We propose two estimators of the cumulative regression function. One estimator that involves smoothing and one that does not. The latter, however, has twice the variance as the smoothing based estimator. Goodness of fit of the model is considered using martingale residuals. Finally, we also discuss how partly-conditional mean models in which the mean of the response is regressed onto selected time-varying covariates may be analysed in the same framework. We apply the methods to longitudinal data on height development for cystic fibrosis patients.
引用
收藏
页码:1000 / 1025
页数:26
相关论文
共 50 条
  • [1] A semiparametric additive regression model for longitudinal data
    Martinussen, T
    Scheike, TH
    [J]. BIOMETRIKA, 1999, 86 (03) : 691 - 702
  • [2] Nonparametric regression analysis of longitudinal data
    Staniswalis, JG
    Lee, JJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (444) : 1403 - 1418
  • [3] Nonparametric additive regression for repeatedly measured data
    Carroll, Raymond J.
    Maity, Arnab
    Mammen, Enno
    Yu, Kyusang
    [J]. BIOMETRIKA, 2009, 96 (02) : 383 - 398
  • [4] Nonparametric estimation of an additive quantile regression model
    Horowitz, JL
    Lee, S
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1238 - 1249
  • [5] Sampling adjusted analysis of dynamic additive regression models for longitudinal data
    Martinussen, T
    Scheike, TH
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (02) : 303 - 323
  • [6] NONPARAMETRIC REGRESSION ANALYSIS OF MULTIVARIATE LONGITUDINAL DATA
    Xiang, Dongdong
    Qiu, Peihua
    Pu, Xiaolong
    [J]. STATISTICA SINICA, 2013, 23 (02) : 769 - 789
  • [7] MONOTONE NONPARAMETRIC REGRESSION FOR FUNCTIONAL/LONGITUDINAL DATA
    Chen, Ziqi
    Gao, Qibing
    Fu, Bo
    Zhu, Hongtu
    [J]. STATISTICA SINICA, 2019, 29 (04) : 2229 - 2249
  • [8] A review of nonparametric regression methods for longitudinal data
    Yang, Changxin
    Zhu, Zhongyi
    [J]. STATISTICS AND ITS INTERFACE, 2024, 17 (01) : 127 - 142
  • [9] Semiparametric and nonparametric regression analysis of longitudinal data
    Lin, DY
    Ying, Z
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 103 - 113
  • [10] A DYNAMIC QUANTILE REGRESSION TRANSFORMATION MODEL FOR LONGITUDINAL DATA
    Mu, Yunming
    Wei, Ying
    [J]. STATISTICA SINICA, 2009, 19 (03) : 1137 - 1153