Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium

被引:91
|
作者
Sheahan, Timothy [2 ]
Rockx, Barry [1 ]
Donaldson, Eric [2 ]
Sims, Amy [1 ,2 ]
Pickles, Raymond [3 ]
Corti, Davide [4 ]
Baric, Ralph [1 ,2 ]
机构
[1] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27699 USA
[2] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC USA
[3] Univ N Carolina, Cyst Fibrosis Res & Treatment Ctr, Chapel Hill, NC USA
[4] Biomed Res Inst, Bellinzona, Switzerland
关键词
D O I
10.1128/JVI.02041-07
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged and caused over 8,000 human cases of infection and more than 700 deaths worldwide. Zoonotic SARS-CoV likely evolved to infect humans by a series of transmission events between humans and animals for sale in China. Using synthetic biology, we engineered the spike protein (S) from a civet strain, SZ16, into our epidemic strain infectious clone, creating the chimeric virus icSZ16-S, which was infectious but yielded progeny viruses incapable of propagating in vitro. After introducing a K479N mutation within the S receptor binding domain (RBD) of SZ16, the recombinant virus (icSZ16-S K479N) replicated in Vero cells but was severely debilitated in growth. The in vitro evolution of icSZ16-S K479N on human airway epithelial (HAE) cells produced two viruses (icSZ16-S K479N D8 and D22) with enhanced growth on HAE cells and on delayed brain tumor cells expressing the SARS-CoV receptor, human angiotensin I converting enzyme 2 (hACE2). The icSZ16-S K479N D8 and D22 virus RBDs contained mutations in ACE2 contact residues, Y442F and L472F, that remodeled S interactions with hACE2. Further, these viruses were neutralized by a human monoclonal antibody (MAb), S230.15, but the parent icSZ16-S K479N strain was eight times more resistant than the mutants. These data suggest that the human adaptation of zoonotic SARS-CoV strains may select for some variants that are highly susceptible to select MAbs that bind to RBDs. The epidemic, icSZ16-S K479N, and icSZ16-S K479N D22 viruses replicate similarly in the BALB/c mouse lung, highlighting the potential use of these zoonotic spike SARS-CoVs to assess vaccine or serotherapy efficacy in vivo.
引用
收藏
页码:2274 / 2285
页数:12
相关论文
共 50 条
  • [41] Molecular biology of severe acute respiratory syndrome coronavirus
    Ziebuhr, J
    CURRENT OPINION IN MICROBIOLOGY, 2004, 7 (04) : 412 - 419
  • [42] A novel coronavirus associated with severe acute respiratory syndrome
    Ksiazek, TG
    Erdman, D
    Goldsmith, CS
    Zaki, SR
    Peret, T
    Emery, S
    Tong, SX
    Urbani, C
    Comer, JA
    Lim, W
    Rollin, PE
    Dowell, SF
    Ling, AE
    Humphrey, CD
    Shieh, WJ
    Guarner, J
    Paddock, CD
    Rota, P
    Fields, B
    DeRisi, J
    Yang, JY
    Cox, N
    Hughes, JM
    LeDuc, JW
    Bellini, WJ
    Anderson, LJ
    NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (20): : 1953 - 1966
  • [43] Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus
    Weiss, SR
    Navas-Martin, S
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2005, 69 (04) : 635 - +
  • [44] Severe acute respiratory syndrome coronavirus infection in children
    Ng, DK
    Lau, WF
    Chan, KK
    Pau, BC
    Lam, YY
    Chan, EY
    Ho, JC
    PEDIATRICS INTERNATIONAL, 2005, 47 (04) : 452 - 455
  • [45] Severe acute respiratory syndrome coronavirus and viral mimicry
    Chew, FT
    Ong, SY
    Hew, CL
    LANCET, 2003, 361 (9374): : 2081 - 2081
  • [46] Neuropathogenesis of severe acute respiratory syndrome coronavirus 2
    Patel, Payal B.
    Bearden, David
    CURRENT OPINION IN PEDIATRICS, 2021, 33 (06) : 597 - 602
  • [47] Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic
    Aquila, Isabella
    Sacco, Matteo Antonio
    Abenavoli, Ludovico
    Malara, Natalia
    Arena, Vincenzo
    Grassi, Simone
    Ausania, Francesco
    Boccuto, Luigi
    Ricci, Cristoforo
    Gratteri, Santo
    Oliva, Antonio
    Ricci, Pietrantonio
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2020, 144 (09) : 1048 - 1056
  • [48] Severe acute respiratory syndrome coronavirus on hospital surfaces
    Dowell, SF
    Simmerman, JM
    Erdman, DD
    Wu, JSJ
    Chaovavanich, A
    Javadi, M
    Yang, JY
    Anderson, LJ
    Tong, SX
    Ho, MS
    CLINICAL INFECTIOUS DISEASES, 2004, 39 (05) : 652 - 657
  • [49] Mosaic evolution of the severe acute respiratory syndrome coronavirus
    Stavrinides, J
    Guttman, DS
    JOURNAL OF VIROLOGY, 2004, 78 (01) : 76 - 82
  • [50] Coronavirus as a possible cause of severe acute respiratory syndrome
    Peiris, JSM
    Lai, ST
    Poon, LLM
    Guan, Y
    Yam, LYC
    Lim, W
    Nicholls, J
    Yee, WKS
    Yan, WW
    Cheung, MT
    Cheng, VCC
    Chan, KH
    Tsang, DNC
    Yung, RWH
    Ng, TK
    Yuen, KY
    LANCET, 2003, 361 (9366): : 1319 - 1325