Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium

被引:91
|
作者
Sheahan, Timothy [2 ]
Rockx, Barry [1 ]
Donaldson, Eric [2 ]
Sims, Amy [1 ,2 ]
Pickles, Raymond [3 ]
Corti, Davide [4 ]
Baric, Ralph [1 ,2 ]
机构
[1] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27699 USA
[2] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC USA
[3] Univ N Carolina, Cyst Fibrosis Res & Treatment Ctr, Chapel Hill, NC USA
[4] Biomed Res Inst, Bellinzona, Switzerland
关键词
D O I
10.1128/JVI.02041-07
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) emerged and caused over 8,000 human cases of infection and more than 700 deaths worldwide. Zoonotic SARS-CoV likely evolved to infect humans by a series of transmission events between humans and animals for sale in China. Using synthetic biology, we engineered the spike protein (S) from a civet strain, SZ16, into our epidemic strain infectious clone, creating the chimeric virus icSZ16-S, which was infectious but yielded progeny viruses incapable of propagating in vitro. After introducing a K479N mutation within the S receptor binding domain (RBD) of SZ16, the recombinant virus (icSZ16-S K479N) replicated in Vero cells but was severely debilitated in growth. The in vitro evolution of icSZ16-S K479N on human airway epithelial (HAE) cells produced two viruses (icSZ16-S K479N D8 and D22) with enhanced growth on HAE cells and on delayed brain tumor cells expressing the SARS-CoV receptor, human angiotensin I converting enzyme 2 (hACE2). The icSZ16-S K479N D8 and D22 virus RBDs contained mutations in ACE2 contact residues, Y442F and L472F, that remodeled S interactions with hACE2. Further, these viruses were neutralized by a human monoclonal antibody (MAb), S230.15, but the parent icSZ16-S K479N strain was eight times more resistant than the mutants. These data suggest that the human adaptation of zoonotic SARS-CoV strains may select for some variants that are highly susceptible to select MAbs that bind to RBDs. The epidemic, icSZ16-S K479N, and icSZ16-S K479N D22 viruses replicate similarly in the BALB/c mouse lung, highlighting the potential use of these zoonotic spike SARS-CoVs to assess vaccine or serotherapy efficacy in vivo.
引用
收藏
页码:2274 / 2285
页数:12
相关论文
共 50 条
  • [31] Severe acute respiratory syndrome coronavirus entry into host cells: Opportunities for therapeutic intervention
    Yeung, Kap-Sun
    Yamanaka, Gregory A.
    Meanwell, Nicholas A.
    MEDICINAL RESEARCH REVIEWS, 2006, 26 (04) : 414 - 433
  • [32] Airway epithelium damage in acute respiratory distress syndrome
    Gerard, Ludovic
    Lecocq, Marylene
    Detry, Bruno
    Bouzin, Caroline
    Hoton, Delphine
    Pereira, Joao Pinto
    Carlier, Francois
    Plante-Bordeneuve, Thomas
    Gohy, Sophie
    Lacroix, Valerie
    Laterre, Pierre-Francois
    Pilette, Charles
    CRITICAL CARE, 2024, 28 (01)
  • [33] Coronaviruses: severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus in travelers
    Al-Tawfiq, Jaffar A.
    Zumla, Alimuddin
    Memish, Ziad A.
    CURRENT OPINION IN INFECTIOUS DISEASES, 2014, 27 (05) : 411 - 417
  • [34] The Role of the IL-1β Pathway in Severe Acute Respiratory Syndrome Coronavirus 2 Infection of Human Airway Epithelia
    Singh, A.
    Nakano, S.
    Cawley, A. M.
    Caitlin, E. E.
    Barnett, K. C.
    Brocke, S. A.
    Dang, H.
    Takanori, A.
    Gilmore, R. C.
    Morton, L. C.
    Randell, S. H.
    Pickles, R. J.
    Ting, J. P.
    O'Neal, W. K.
    Baric, R. S.
    Boucher, R. C.
    Okuda, K.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [35] Cleavage and Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by Human Airway Trypsin-Like Protease
    Bertram, Stephanie
    Glowacka, Ilona
    Mueller, Marcel A.
    Lavender, Hayley
    Gnirss, Kerstin
    Nehlmeier, Inga
    Niemeyer, Daniela
    He, Yuxian
    Simmons, Graham
    Drosten, Christian
    Soilleux, Elizabeth J.
    Jahn, Olaf
    Steffen, Imke
    Poehlmann, Stefan
    JOURNAL OF VIROLOGY, 2011, 85 (24) : 13363 - 13372
  • [36] Assembly of human severe acute respiratory syndrome coronavirus-like particles
    Ho, Y
    Lin, PH
    Liu, CYY
    Lee, SP
    Chao, YC
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 318 (04) : 833 - 838
  • [38] Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Emerging Zoonotic Respiratory Pathogen in Humans
    Malla, Ashwini
    Shanmugaraj, Balamurugan
    Ramalingam, Sathishkumar
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2020, 14 : 931 - 936
  • [39] Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice
    Glass, WG
    Subbarao, K
    Murphy, B
    Murphy, PM
    JOURNAL OF IMMUNOLOGY, 2004, 173 (06): : 4030 - 4039
  • [40] Release of Severe Acute Respiratory Syndrome Coronavirus Nuclear Import Block Enhances Host Transcription in Human Lung Cells
    Sims, Amy C.
    Tilton, Susan C.
    Menachery, Vineet D.
    Gralinski, Lisa E.
    Schaefer, Alexandra
    Matzke, Melissa M.
    Webb-Robertson, Bobbie-Jo M.
    Chang, Jean
    Luna, Maria L.
    Long, Casey E.
    Shukla, Anil K.
    Bankhead, Armand R., III
    Burkett, Susan E.
    Zornetzer, Gregory
    Tseng, Chien-Te Kent
    Metz, Thomas O.
    Pickles, Raymond
    McWeeney, Shannon
    Smith, Richard D.
    Katze, Michael G.
    Waters, Katrina M.
    Baric, Ralph S.
    JOURNAL OF VIROLOGY, 2013, 87 (07) : 3885 - 3902