Equilateral triangles in finite metric spaces

被引:0
|
作者
Mascioni, V [1 ]
机构
[1] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2004年 / 11卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the context of finite metric spaces with integer distances, we investigate the new Ramsey-type question of how many points can a space contain and yet be free of equilateral triangles. In particular, for finite metric spaces with distances in the set {1,..., n}, the number D-n is defined as the least number of points the space must contain in order to be sure that there will be an equilateral triangle in it. Several issues related to these numbers are studied, mostly focusing on low values of n. Apart from the trivial D-1 = 3, D-2 = 6, we prove that D-3 = 12, D-4 = 33 and 81 less than or equal to D-5 less than or equal to 95.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A Characterization of the Equilateral Triangles and Some Consequences
    Conway, John
    MATHEMATICAL INTELLIGENCER, 2014, 36 (02): : 1 - 2
  • [42] The Rational Distance Problem for Equilateral Triangles
    Barbara, Roy
    Karam, Antoine
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (02): : 139 - 145
  • [43] Finite Spaces Pretangent to Metric Spaces at Infinity
    Bilet V.
    Dovgoshey O.
    Journal of Mathematical Sciences, 2019, 242 (3) : 360 - 380
  • [44] Exit Times from Equilateral Triangles
    Aureli Alabert
    Mercè Farré
    Rahul Roy
    Applied Mathematics and Optimization, 2004, 49 : 43 - 53
  • [45] On the maximum number of equilateral triangles, I
    Abrego, BM
    Fernández-Merchant, S
    DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 23 (01) : 129 - 135
  • [46] Tiling Convex Polygons with Congruent Equilateral Triangles
    Eike Hertel
    Christian Richter
    Discrete & Computational Geometry, 2014, 51 : 753 - 759
  • [47] Packing a triangle by equilateral triangles of harmonic sidelengths
    Januszewski, Janusz
    Zielonka, Lukasz
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [48] Dense quasicrystalline tilings by squares and equilateral triangles
    O'Keeffe, Michael
    Treacy, Michael M. J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2010, 66 : 5 - 9
  • [49] A Parametrization of Equilateral Triangles Having Integer Coordinates
    Ionascu, Eugen J.
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (06)
  • [50] Vortex configurations in thin superconducting equilateral triangles
    Cabral, L. R. E.
    Aguiar, J. Albino
    PHYSICAL REVIEW B, 2009, 80 (21)