Equilateral triangles in finite metric spaces

被引:0
|
作者
Mascioni, V [1 ]
机构
[1] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2004年 / 11卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the context of finite metric spaces with integer distances, we investigate the new Ramsey-type question of how many points can a space contain and yet be free of equilateral triangles. In particular, for finite metric spaces with distances in the set {1,..., n}, the number D-n is defined as the least number of points the space must contain in order to be sure that there will be an equilateral triangle in it. Several issues related to these numbers are studied, mostly focusing on low values of n. Apart from the trivial D-1 = 3, D-2 = 6, we prove that D-3 = 12, D-4 = 33 and 81 less than or equal to D-5 less than or equal to 95.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] INVERTING A TRANSFORMATION BY EQUILATERAL TRIANGLES
    MAULDON, JG
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (01): : 55 - 57
  • [22] Analytic characterization of equilateral triangles
    Shigehiro Sakata
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2191 - 2212
  • [23] The Karcher mean of equilateral triangles
    Ghiglioni, Eduardo
    Lim, Yongdo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 656 : 421 - 445
  • [24] Configurations of inscribed equilateral triangles
    Cerin, Zvonko
    JOURNAL OF GEOMETRY, 2007, 87 (1-2) : 14 - 30
  • [25] Analytic characterization of equilateral triangles
    Sakata, Shigehiro
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (05) : 2191 - 2212
  • [26] On mappings preserving equilateral triangles
    Sikorska J.
    Szostok T.
    Journal of Geometry, 2004, 80 (1-2) : 209 - 218
  • [27] ON METRIC COMPLEMENTS AND METRIC REGULARITY IN FINITE METRIC SPACES
    Oblaukhov, A. K.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2020, (49): : 35 - 45
  • [28] New Geometric Constants in Banach Spaces Related to the Inscribed Equilateral Triangles of Unit Balls
    Fu, Yuankang
    Liu, Qi
    Li, Yongjin
    SYMMETRY-BASEL, 2021, 13 (06):
  • [29] Main Metric Invariants of Finite Metric Spaces
    Sosov, E. N.
    RUSSIAN MATHEMATICS, 2015, 59 (05) : 38 - 40
  • [30] Magnetization reversal of equilateral Fe triangles
    Westphalen, A.
    Schumann, A.
    Remhof, A.
    Zabel, H.
    Last, T.
    Kunze, U.
    PHYSICAL REVIEW B, 2006, 74 (10)