Equilateral triangles in finite metric spaces

被引:0
|
作者
Mascioni, V [1 ]
机构
[1] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2004年 / 11卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the context of finite metric spaces with integer distances, we investigate the new Ramsey-type question of how many points can a space contain and yet be free of equilateral triangles. In particular, for finite metric spaces with distances in the set {1,..., n}, the number D-n is defined as the least number of points the space must contain in order to be sure that there will be an equilateral triangle in it. Several issues related to these numbers are studied, mostly focusing on low values of n. Apart from the trivial D-1 = 3, D-2 = 6, we prove that D-3 = 12, D-4 = 33 and 81 less than or equal to D-5 less than or equal to 95.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] THE DISSECTION OF EQUILATERAL TRIANGLES INTO EQUILATERAL TRIANGLES
    TUTTE, WT
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1948, 44 (04): : 463 - 482
  • [2] On mappings preserving equilateral triangles in normed spaces
    Sikorska, Justyna
    Szostok, Tomasz
    JOURNAL OF GEOMETRY, 2006, 85 (1-2) : 149 - 156
  • [3] Equilateral triangles and triangles
    Jerrard, RP
    Wetzel, JE
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (10): : 909 - 915
  • [4] Equilateral Triangles in ℤ4
    Ionascu E.J.
    Vietnam Journal of Mathematics, 2015, 43 (3) : 525 - 539
  • [5] COUNTING EQUILATERAL TRIANGLES
    MOSER, WOJ
    FREITAG, HT
    FIBONACCI QUARTERLY, 1980, 18 (04): : 371 - 372
  • [6] Equilateral cevian triangles
    Goering, D
    AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (06): : 567 - 570
  • [7] A TRIO OF EQUILATERAL TRIANGLES
    SHOLANDE.M
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (10): : 1139 - +
  • [8] Metric spaces in which many triangles are degenerate
    Chvatal, Vasek
    de Rancourt, Noe
    Quintero, Guillermo Gamboa
    Kantor, Ida
    Szabo, Peter G. N.
    DISCRETE APPLIED MATHEMATICS, 2024, 350 : 97 - 99
  • [9] Some Geometric Constants Related to the Midline of Equilateral Triangles in Banach Spaces
    Chen, Bingren
    Yang, Zhijian
    Liu, Qi
    Li, Yongjin
    SYMMETRY-BASEL, 2022, 14 (02):