Bayesian Variable Selection in Spatial Autoregressive Models

被引:18
|
作者
Piribauer, Philipp [1 ]
Cuaresma, Jesus Crespo [1 ,2 ]
机构
[1] Austrian Inst Econ Res WIFO, Objekt 20, A-1010 Vienna, Austria
[2] Vienna Univ Econ & Business WU, Int Inst Appl Syst Anal IIASA, Wittgenstein Ctr Demog & Global Human Capital WIC, Vienna, Austria
关键词
Spatial autoregressive model; variable selection; model uncertainty; Markov chain Monte Carlo methods; determinants of economic growth; ECONOMETRIC-MODELS; SPECIFICATION; PRIORS;
D O I
10.1080/17421772.2016.1227468
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper compares the performance of Bayesian variable selection approaches for spatial autoregressive models. It presents two alternative approaches that can be implemented using Gibbs sampling methods in a straightforward way and which allow one to deal with the problem of model uncertainty in spatial autoregressive models in a flexible and computationally efficient way. A simulation study shows that the variable selection approaches tend to outperform existing Bayesian model averaging techniques in terms of both in-sample predictive performance and computational efficiency. The alternative approaches are compared in an empirical application using data on economic growth for European NUTS-2 regions.
引用
收藏
页码:457 / 479
页数:23
相关论文
共 50 条
  • [31] Variable selection in generalized random coefficient autoregressive models
    Zhao, Zhiwen
    Liu, Yangping
    Peng, Cuixin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [32] Variable selection for semiparametric varying-coefficient spatial autoregressive models with a diverging number of parameters
    Luo, Guowang
    Wu, Mixia
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (09) : 2062 - 2079
  • [33] Variable selection in generalized random coefficient autoregressive models
    Zhiwen Zhao
    Yangping Liu
    Cuixin Peng
    [J]. Journal of Inequalities and Applications, 2018
  • [34] Orthogonality based penalized GMM estimation for variable selection in partially linear spatial autoregressive models
    Zhao, Peixin
    Gan, Haogeng
    Cheng, Suli
    Zhou, Xiaoshuang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (06) : 1676 - 1691
  • [35] Variable Selection of Spatial Logistic Autoregressive Model with Linear Constraints
    Song, Yunquan
    Su, Yuqi
    Wang, Zhijian
    [J]. ENTROPY, 2022, 24 (11)
  • [36] Bayesian estimation for heterogeneous spatial autoregressive models with variance modelling
    Tian, Ruiqin
    Xu, Dengke
    Du, Jiang
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (06) : 3013 - 3026
  • [37] A Bayesian approach for the estimation of weight matrices in spatial autoregressive models
    Krisztin, Tamas
    Piribauer, Philipp
    [J]. SPATIAL ECONOMIC ANALYSIS, 2023, 18 (01) : 44 - 63
  • [38] Best Subset Selection for Double-Threshold-Variable Autoregressive Moving-Average Models: The Bayesian Approach
    Zheng, Xiaobing
    Liang, Kun
    Xia, Qiang
    Zhang, Dabin
    [J]. COMPUTATIONAL ECONOMICS, 2022, 59 (03) : 1175 - 1201
  • [39] Best Subset Selection for Double-Threshold-Variable Autoregressive Moving-Average Models: The Bayesian Approach
    Xiaobing Zheng
    Kun Liang
    Qiang Xia
    Dabin Zhang
    [J]. Computational Economics, 2022, 59 : 1175 - 1201
  • [40] Bayesian variable selection for proportional hazards models
    Ibrahim, JG
    Chen, MH
    MacEachern, SN
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 701 - 717