Bayesian estimation for heterogeneous spatial autoregressive models with variance modelling

被引:0
|
作者
Tian, Ruiqin [1 ]
Xu, Dengke [2 ]
Du, Jiang [3 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Econ, Hangzhou, Peoples R China
[3] Beijing Univ Technol, Coll Stat & Data Sci, Fac Sci, Beijing, Peoples R China
关键词
Gibbs sampler; Heterogeneity; Metropolis-Hastings algorithm; Spatial autoregressive models; STATISTICAL-INFERENCE;
D O I
10.1080/03610918.2022.2093903
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce a new class of heterogeneous spatial autoregressive models (heterogeneous SAR models) where the variance parameters are modeled in terms of covariates. In order to estimate the model parameters, as well as their corresponding standard error estimates, we proposed a computational efficient MCMC method which combines the Gibbs sampler with Metropolis-Hastings algorithm. The proposed estimate method is illustrated through numerous simulations and is applied to the Boston housing data.
引用
收藏
页码:3013 / 3026
页数:14
相关论文
共 50 条