机构:
Sungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea
Kim, Young Geun
[1
]
Baek, Changryong
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea
Baek, Changryong
[1
]
机构:
[1] Sungkyunkwan Univ, Dept Stat, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea
Bayesian vector heterogeneous autoregressive model (BVHAR);
Bayesian vector autoregressive (BVAR) model;
posterior consistency;
long memory;
D O I:
10.1080/00949655.2023.2281644
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
The Bayesian vector autoregressive (BVAR) model with the Minnesota prior proposed by Litterman [Litterman RB. Forecasting with bayesian vector autoregressions-five years of experience. J Business Economic Statist.1986;4(1):25-38.] has been very successful in multivariate time series modelling, providing better forecasting performance. However, the conventional Minnesota prior for BVAR depends only on the latest lag; in turn, it is not suitable for multivariate long memory time series forecasting. This study extends BVAR to (possibly) high-dimensional long memory time series. To this end, we incorporate a vector heterogeneous autoregressive (VHAR) structure to accommodate long-term persistence and impose priors on distant lags as well. Our proposed Bayesian VHAR (BVHAR) models, the so-called BVHAR-S and BVHAR-L, are easy to implement by using the Normal-inverse-Wishart prior and added dummy variable approach of [Banbura M, Giannone D, Reichlin L. Large bayesian vector auto regressions. J Appl Econom. 2010;25(1):71-92.]. A supporting simulation study also proves posterior consistency. We further apply our models to nine CBOE Volatility Indices (VIXs) and show that our BVHAR models perform best in forecasting with the narrowest forecasting region.
机构:
Univ Salento, Dipartimento Ingn Innovaz, Via Monteroni, I-73100 Lecce, ItalyUniv Salento, Dipartimento Ingn Innovaz, Via Monteroni, I-73100 Lecce, Italy
Coluccia, Angelo
Dabbene, Fabrizio
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Natl Res Council Italy, CNR, IEIIT, Corso Duca Abruzzi 14, I-10129 Turin, ItalyUniv Salento, Dipartimento Ingn Innovaz, Via Monteroni, I-73100 Lecce, Italy
Dabbene, Fabrizio
Ravazzi, Chiara
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Natl Res Council Italy, CNR, IEIIT, Corso Duca Abruzzi 14, I-10129 Turin, ItalyUniv Salento, Dipartimento Ingn Innovaz, Via Monteroni, I-73100 Lecce, Italy
Ravazzi, Chiara
2019 18TH EUROPEAN CONTROL CONFERENCE (ECC),
2019,
: 842
-
847
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
Liu, Yonghui
Yao, Zhao
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Sch Econ, Shanghai, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
Yao, Zhao
Wang, Qingrui
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
Wang, Qingrui
Hao, Chengcheng
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
Hao, Chengcheng
Liu, Shuangzhe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Canberra, Fac Sci & Technol, Canberra, AustraliaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
机构:
Univ Missouri, Dept Stat, Columbia, MO 65211 USA
E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R ChinaUniv Missouri, Dept Stat, Columbia, MO 65211 USA
Sun, Dongchu
Ni, Shawn
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Econ, Columbia, MO 65211 USAUniv Missouri, Dept Stat, Columbia, MO 65211 USA