Bayesian estimates for vector autoregressive models

被引:31
|
作者
Ni, S [1 ]
Sun, DC
机构
[1] Univ Missouri, Dept Econ, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
Bayesian VAR; LINEX loss; noninformative priors; pseudoentropy loss; quadratic loss; student-t distribution;
D O I
10.1198/073500104000000622
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article examines frequentist risks of Bayesian estimates of vector autoregressive (VAR) regression coefficient and error covariance matrices under competing loss functions, under various noninformative priors, and in the normal and Student-t models. Simulation results show that for the regression coefficient matrix, an asymmetric LINEX estimator does better overall than the posterior mean. No dominating estimator emerges for the error covariance matrix. We find that the choice of prior has a more significant effect on the estimates than the form of estimator. For the VAR regression coefficients, a shrinkage prior dominates a constant prior. For the error covariance matrix, Yang and Berger's reference prior dominates the Jeffreys prior. Estimation of a VAR using U.S. macroeconomic data yields significantly different estimates under competing priors.
引用
收藏
页码:105 / 117
页数:13
相关论文
共 50 条
  • [1] Bayesian averaging of classical estimates in asymmetric vector autoregressive models
    Albis, Manuel Leonard F.
    Mapa, Dennis S.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 1760 - 1770
  • [2] Bayesian nonparametric vector autoregressive models
    Kalli, Maria
    Griffin, Jim E.
    [J]. JOURNAL OF ECONOMETRICS, 2018, 203 (02) : 267 - 282
  • [3] A spatial prior for Bayesian vector autoregressive models
    LeSage, JP
    Krivelyova, A
    [J]. JOURNAL OF REGIONAL SCIENCE, 1999, 39 (02) : 297 - 317
  • [4] Adaptive Shrinkage in Bayesian Vector Autoregressive Models
    Huber, Florian
    Feldkircher, Martin
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2019, 37 (01) : 27 - 39
  • [5] Bayesian testing of restrictions on vector autoregressive models
    Sun, Dongchu
    Ni, Shawn
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (11) : 3008 - 3022
  • [6] Predicting stock returns with Bayesian vector autoregressive models
    Bessler, Wolfgang
    Lueckoff, Peter
    [J]. DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, : 499 - +
  • [7] Bayesian Graphical Models for STructural Vector Autoregressive Processes
    Ahelegbey, Daniel Felix
    Billio, Monica
    Casarin, Roberto
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2016, 31 (02) : 357 - 386
  • [8] Forecasting with Global Vector Autoregressive Models: a Bayesian Approach
    Cuaresma, Jesus Crespo
    Feldkircher, Martin
    Huber, Florian
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2016, 31 (07) : 1371 - 1391
  • [9] INFERENCE IN BAYESIAN ADDITIVE VECTOR AUTOREGRESSIVE TREE MODELS
    Huber, Florian
    Rossini, Luca
    [J]. ANNALS OF APPLIED STATISTICS, 2022, 16 (01): : 104 - 123
  • [10] A new posterior sampler for Bayesian structural vector autoregressive models
    Bruns, Martin
    Piffer, Michele
    [J]. QUANTITATIVE ECONOMICS, 2023, 14 (04) : 1221 - 1250