Bayesian estimates for vector autoregressive models

被引:31
|
作者
Ni, S [1 ]
Sun, DC
机构
[1] Univ Missouri, Dept Econ, Columbia, MO 65211 USA
[2] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
Bayesian VAR; LINEX loss; noninformative priors; pseudoentropy loss; quadratic loss; student-t distribution;
D O I
10.1198/073500104000000622
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article examines frequentist risks of Bayesian estimates of vector autoregressive (VAR) regression coefficient and error covariance matrices under competing loss functions, under various noninformative priors, and in the normal and Student-t models. Simulation results show that for the regression coefficient matrix, an asymmetric LINEX estimator does better overall than the posterior mean. No dominating estimator emerges for the error covariance matrix. We find that the choice of prior has a more significant effect on the estimates than the form of estimator. For the VAR regression coefficients, a shrinkage prior dominates a constant prior. For the error covariance matrix, Yang and Berger's reference prior dominates the Jeffreys prior. Estimation of a VAR using U.S. macroeconomic data yields significantly different estimates under competing priors.
引用
收藏
页码:105 / 117
页数:13
相关论文
共 50 条
  • [21] Bayesian mixture of autoregressive models
    Lau, John W.
    So, Mike K. P.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (01) : 38 - 60
  • [22] Bayesian Mixtures of Autoregressive Models
    Wood, Sally
    Rosen, Ori
    Kohn, Robert
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 174 - 195
  • [23] Bayesian methods for autoregressive models
    Penny, W.D.
    Roberts, S.J.
    [J]. Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 2000, 1 : 125 - 134
  • [24] Efficient Bayesian model class selection of vector autoregressive models for system identification
    Yang, Jia-Hua
    Kong, Qing-Zhao
    Liu, Hong-Jun
    Peng, Hua-Yi
    [J]. STRUCTURAL CONTROL & HEALTH MONITORING, 2021, 28 (09):
  • [25] Bayesian Identification of Distributed Vector AutoRegressive Processes
    Coluccia, Angelo
    Dabbene, Fabrizio
    Ravazzi, Chiara
    [J]. 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 842 - 847
  • [26] BAYESIAN SPARSE VECTOR AUTOREGRESSIVE SWITCHING MODELS WITH APPLICATION TO HUMAN GESTURE PHASE SEGMENTATION
    Hadj-Amar, Beniamino
    Jewson, Jack
    Vannucci, Marina
    [J]. ANNALS OF APPLIED STATISTICS, 2024, 18 (03): : 2511 - 2531
  • [27] Diagnostic analystics in the Bayesian vector autoregressive model
    Liu, Yonghui
    Yao, Zhao
    Wang, Qingrui
    Hao, Chengcheng
    Liu, Shuangzhe
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024,
  • [28] Bayesian identification of seasonal autoregressive models
    Shaarawy, SM
    Ali, SS
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (05) : 1067 - 1084
  • [29] Bayesian analysis of conditional autoregressive models
    Victor De Oliveira
    [J]. Annals of the Institute of Statistical Mathematics, 2012, 64 : 107 - 133
  • [30] Bayesian analysis of conditional autoregressive models
    De Oliveira, Victor
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2012, 64 (01) : 107 - 133