Efficient model-based reinforcement learning for approximate online optimal control

被引:61
|
作者
Kamalapurkar, Rushikesh [1 ]
Rosenfeld, Joel A. [2 ]
Dixon, Warren E. [2 ]
机构
[1] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA
[2] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL USA
基金
美国国家科学基金会;
关键词
Model-based reinforcement learning; Data-based control; Adaptive control; Local approximation; DISCRETE-TIME-SYSTEMS; ADAPTIVE OPTIMAL-CONTROL; NONLINEAR-SYSTEMS; NETWORK; DYNAMICS;
D O I
10.1016/j.automatica.2016.08.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An infinite horizon optimal regulation problem is solved online for a deterministic control-affine nonlinear dynamical system using a state following (StaF) kernel method to approximate the value function. Unlike traditional methods that aim to approximate a function over a large compact set, the StaF kernel method aims to approximate a function in a small neighborhood of a state that travels within a compact set. Simulation results demonstrate that stability and approximate optimality of the control system can be achieved with significantly fewer basis functions than may be required for global approximation methods. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 50 条
  • [41] Efficient Model-Based Deep Reinforcement Learning with Variational State Tabulation
    Corneil, Dane
    Gerstner, Wulfram
    Brea, Johanni
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [42] Data-efficient model-based reinforcement learning with trajectory discrimination
    Qu, Tuo
    Duan, Fuqing
    Zhang, Junge
    Zhao, Bo
    Huang, Wenzhen
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 1927 - 1936
  • [43] Data-efficient model-based reinforcement learning with trajectory discrimination
    Tuo Qu
    Fuqing Duan
    Junge Zhang
    Bo Zhao
    Wenzhen Huang
    [J]. Complex & Intelligent Systems, 2024, 10 : 1927 - 1936
  • [44] Provably Efficient Causal Model-Based Reinforcement Learning for Systematic Generalization
    Mutti, Mirco
    De Santi, Riccardo
    Rossi, Emanuele
    Calderon, Juan Felipe
    Bronstein, Michael
    Restelli, Marcello
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9251 - 9259
  • [45] A survey on model-based reinforcement learning
    Fan-Ming Luo
    Tian Xu
    Hang Lai
    Xiong-Hui Chen
    Weinan Zhang
    Yang Yu
    [J]. Science China Information Sciences, 2024, 67
  • [46] The ubiquity of model-based reinforcement learning
    Doll, Bradley B.
    Simon, Dylan A.
    Daw, Nathaniel D.
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (06) : 1075 - 1081
  • [47] Nonparametric model-based reinforcement learning
    Atkeson, CG
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 1008 - 1014
  • [48] Model-based Reinforcement Learning: A Survey
    Moerland, Thomas M.
    Broekens, Joost
    Plaat, Aske
    Jonker, Catholijn M.
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2023, 16 (01): : 1 - 118
  • [49] A survey on model-based reinforcement learning
    Fan-Ming LUO
    Tian XU
    Hang LAI
    Xiong-Hui CHEN
    Weinan ZHANG
    Yang YU
    [J]. Science China(Information Sciences), 2024, 67 (02) : 59 - 84
  • [50] Multiple model-based reinforcement learning
    Doya, K
    Samejima, K
    Katagiri, K
    Kawato, M
    [J]. NEURAL COMPUTATION, 2002, 14 (06) : 1347 - 1369