Efficient model-based reinforcement learning for approximate online optimal control

被引:61
|
作者
Kamalapurkar, Rushikesh [1 ]
Rosenfeld, Joel A. [2 ]
Dixon, Warren E. [2 ]
机构
[1] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA
[2] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL USA
基金
美国国家科学基金会;
关键词
Model-based reinforcement learning; Data-based control; Adaptive control; Local approximation; DISCRETE-TIME-SYSTEMS; ADAPTIVE OPTIMAL-CONTROL; NONLINEAR-SYSTEMS; NETWORK; DYNAMICS;
D O I
10.1016/j.automatica.2016.08.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An infinite horizon optimal regulation problem is solved online for a deterministic control-affine nonlinear dynamical system using a state following (StaF) kernel method to approximate the value function. Unlike traditional methods that aim to approximate a function over a large compact set, the StaF kernel method aims to approximate a function in a small neighborhood of a state that travels within a compact set. Simulation results demonstrate that stability and approximate optimality of the control system can be achieved with significantly fewer basis functions than may be required for global approximation methods. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 50 条
  • [21] Offline Model-Based Reinforcement Learning for Tokamak Control
    Char, Ian
    Abbate, Joseph
    Bardoczi, Laszlo
    Boyer, Mark D.
    Chung, Youngseog
    Conlin, Rory
    Erickson, Keith
    Mehta, Viraj
    Richner, Nathan
    Kolemen, Egemen
    Schneider, Jeff
    [J]. LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [22] Efficient hyperparameter optimization through model-based reinforcement learning
    Wu, Jia
    Chen, SenPeng
    Liu, XiYuan
    [J]. NEUROCOMPUTING, 2020, 409 : 381 - 393
  • [23] A Probabilistic Model-Based Online Learning Optimal Control Algorithm for Soft Pneumatic Actuators
    Tang, Zhi Qiang
    Heung, Ho Lam
    Tong, Kai Yu
    Li, Zheng
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 1437 - 1444
  • [24] Efficient learning of power grid voltage control strategies via model-based deep reinforcement learning
    Hossain, Ramij Raja
    Yin, Tianzhixi
    Du, Yan
    Huang, Renke
    Tan, Jie
    Yu, Wenhao
    Liu, Yuan
    Huang, Qiuhua
    [J]. MACHINE LEARNING, 2024, 113 (05) : 2675 - 2700
  • [25] Efficient learning of power grid voltage control strategies via model-based deep reinforcement learning
    Ramij Raja Hossain
    Tianzhixi Yin
    Yan Du
    Renke Huang
    Jie Tan
    Wenhao Yu
    Yuan Liu
    Qiuhua Huang
    [J]. Machine Learning, 2024, 113 : 2675 - 2700
  • [26] Model-based reinforcement learning for output-feedback optimal control of a class of nonlinear systems
    Self, Ryan
    Harlan, Michael
    Kamalapurkar, Rushikesh
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 2378 - 2383
  • [27] Model-Based Reinforcement Learning Framework of Online Network Resource Allocation
    Bakhshi, Bahador
    Mangues-Bafalluy, Josep
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 4456 - 4461
  • [28] Fault Tolerant Control combining Reinforcement Learning and Model-based Control
    Bhan, Luke
    Quinones-Grueiro, Marcos
    Biswas, Gautam
    [J]. 5TH CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL 2021), 2021, : 31 - 36
  • [29] Parameter Optimal Iterative Learning Control Design: from Model-based, Data-driven to Reinforcement Learning *
    Zhang, Yueqing
    Chu, Bing
    Shu, Zhan
    [J]. IFAC PAPERSONLINE, 2022, 55 (12): : 494 - 499
  • [30] Approximate Optimal Stabilization Control of Servo Mechanisms based on Reinforcement Learning Scheme
    Lv, Yongfeng
    Ren, Xuemei
    Hu, Shuangyi
    Xu, Hao
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (10) : 2655 - 2665