Epigenome-wide association studies for common human diseases

被引:883
|
作者
Rakyan, Vardhman K. [1 ]
Down, Thomas A. [2 ,3 ]
Balding, David J. [4 ]
Beck, Stephan [5 ]
机构
[1] Univ London, Barts & London Sch Med & Dent, Blizard Inst Cell & Mol Sci, London E1 2AT, England
[2] Univ Cambridge, Wellcome Trust Canc Res UK Gurdon Inst, Cambridge CB2 1QR, England
[3] Univ Cambridge, Dept Genet, Cambridge CB2 1QR, England
[4] UCL, Genet Inst, London WC1E 6BT, England
[5] UCL, UCL Canc Inst, London WC1E 6BT, England
基金
英国惠康基金;
关键词
DNA METHYLATION PROFILES; HUMAN GENOME; COLORECTAL-CANCER; SINGLE-MOLECULE; HIGH-THROUGHPUT; COMPLEX TRAITS; HAPLOTYPE MAP; STEM-CELLS; METHYLOME; GENE;
D O I
10.1038/nrg3000
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Despite the success of genome-wide association studies (GWASs) in identifying loci associated with common diseases, a substantial proportion of the causality remains unexplained. Recent advances in genomic technologies have placed us in a position to initiate large-scale studies of human disease-associated epigenetic variation, specifically variation in DNA methylation. Such epigenome-wide association studies (EWASs) present novel opportunities but also create new challenges that are not encountered in GWASs. We discuss EWAS design, cohort and sample selections, statistical significance and power, confounding factors and follow-up studies. We also discuss how integration of EWASs with GWASs can help to dissect complex GWAS haplotypes for functional analysis.
引用
收藏
页码:529 / 541
页数:13
相关论文
共 50 条
  • [21] Epigenome-wide association studies: current knowledge, strategies and recommendations
    Maria Pia Campagna
    Alexandre Xavier
    Jeannette Lechner-Scott
    Vicky Maltby
    Rodney J. Scott
    Helmut Butzkueven
    Vilija G. Jokubaitis
    Rodney A. Lea
    Clinical Epigenetics, 2021, 13
  • [22] Epigenome-Wide Association Study of Wellbeing
    Baselmans, Bart M. L.
    van Dongen, Jenny
    Nivard, Michel G.
    Lin, Bochao D.
    Zilhao, Nuno R.
    Boomsma, Dorret I.
    Bartels, Meike
    TWIN RESEARCH AND HUMAN GENETICS, 2015, 18 (06) : 710 - 719
  • [23] AN EPIGENOME-WIDE ASSOCIATION STUDY OF OSTEOARTHRITIS
    Zhai, G.
    Rabie, Z.
    Eshghi, E. Aref
    Green, R.
    Furey, A.
    Martin, G.
    Sun, G.
    Rahman, P.
    OSTEOARTHRITIS AND CARTILAGE, 2013, 21 : S170 - S170
  • [24] Genome-wide association studies and epigenome-wide association studies go together in cancer control
    Verma, Mukesh
    FUTURE ONCOLOGY, 2016, 12 (13) : 1645 - 1664
  • [25] EWAS: epigenome-wide association studies software 1.0 – identifying the association between combinations of methylation levels and diseases
    Jing Xu
    Di Liu
    Linna Zhao
    Ying Li
    Zhaoyang Wang
    Yang Chen
    Changgui Lei
    Lin Gao
    Fanwu Kong
    Lijun Yuan
    Yongshuai Jiang
    Scientific Reports, 6
  • [26] Identification of differentially methylated cell types in epigenome-wide association studies
    Zheng, Shijie C.
    Breeze, Charles E.
    Beck, Stephan
    Teschendorff, Andrew E.
    NATURE METHODS, 2018, 15 (12) : 1059 - +
  • [27] Identification of differentially methylated cell types in epigenome-wide association studies
    Shijie C. Zheng
    Charles E. Breeze
    Stephan Beck
    Andrew E. Teschendorff
    Nature Methods, 2018, 15 : 1059 - 1066
  • [28] Epigenome-wide association studies in Alzheimer's disease; achievements and challenges
    van den Hove, Daniel L. A.
    Riemens, Renzo J. M.
    Koulousakis, Philippos
    Pishva, Ehsan
    BRAIN PATHOLOGY, 2020, 30 (05) : 978 - 983
  • [29] Epigenome-wide association studies: the exposures of yesterday form the methylations of tomorrow
    Weckmann, Markus
    Reddy, Karosham Diren
    EUROPEAN RESPIRATORY JOURNAL, 2023, 62 (06)
  • [30] QCEWAS: automated quality control of results of epigenome-wide association studies
    Van der Most, Peter J.
    Kupers, Leanne K.
    Snieder, Harold
    Nolte, Ilja
    BIOINFORMATICS, 2017, 33 (08) : 1243 - 1245