QCEWAS: automated quality control of results of epigenome-wide association studies

被引:27
|
作者
Van der Most, Peter J. [1 ]
Kupers, Leanne K. [1 ]
Snieder, Harold [1 ]
Nolte, Ilja [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Epidemiol, Groningen, Netherlands
关键词
DNA METHYLATION DATA; METAANALYSIS; SMOKING;
D O I
10.1093/bioinformatics/btw766
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The increasing popularity of epigenome-wide association studies (EWAS) has led to the establishment of several large international meta-analysis consortia. However, when using data originating from multiple sources, a thorough and centralized quality control is essential. To facilitate this, we developed the QCEWAS R package. QCEWAS enables automated quality control of results files of EWAS. QCEWAS produces cohort-specific statistics and graphs to interpret the quality of the results files, graphs comparing results of multiple cohorts, as well as cleaned input files ready for meta-analysis. Availability and Implementation: https://cran.r-project.org/web/packages/QCEWAS Contact:i.m.nolte@umcg.nl
引用
收藏
页码:1243 / 1245
页数:3
相关论文
共 50 条
  • [1] Estimands in epigenome-wide association studies
    Kruppa, Jochen
    Sieg, Miriam
    Richter, Gesa
    Pohrt, Anne
    CLINICAL EPIGENETICS, 2021, 13 (01)
  • [2] Estimands in epigenome-wide association studies
    Jochen Kruppa
    Miriam Sieg
    Gesa Richter
    Anne Pohrt
    Clinical Epigenetics, 2021, 13
  • [3] Epigenome-Wide Association Studies (EWAS) in Cancer
    Verma, Mukesh
    CURRENT GENOMICS, 2012, 13 (04) : 308 - 313
  • [4] Genome-wide association studies and epigenome-wide association studies go together in cancer control
    Verma, Mukesh
    FUTURE ONCOLOGY, 2016, 12 (13) : 1645 - 1664
  • [5] Epigenome-wide association studies in asthma: A systematic review
    Edris, Ahmed
    den Dekker, Herman T.
    Melen, Erik
    Lahousse, Lies
    CLINICAL AND EXPERIMENTAL ALLERGY, 2019, 49 (07): : 953 - 968
  • [6] Advances in epigenome-wide association studies for common diseases
    Paul, Dirk S.
    Beck, Stephan
    TRENDS IN MOLECULAR MEDICINE, 2014, 20 (10) : 541 - 543
  • [7] Estimation of a significance threshold for epigenome-wide association studies
    Saffari, Ayden
    Silver, Matt J.
    Zavattari, Patrizia
    Moi, Loredana
    Columbano, Amedeo
    Meaburn, Emma L.
    Dudbridge, Frank
    GENETIC EPIDEMIOLOGY, 2018, 42 (01) : 20 - 33
  • [8] Recommendations for the design and analysis of epigenome-wide association studies
    Michels, Karin B.
    Binder, Alexandra M.
    Dedeurwaerder, Sarah
    Epstein, Charles B.
    Greally, John M.
    Gut, Ivo
    Houseman, E. Andres
    Izzi, Benedetta
    Kelsey, Karl T.
    Meissner, Alexander
    Milosavljevic, Aleksandar
    Siegmund, Kimberly D.
    Bock, Christoph
    Irizarry, Rafael A.
    NATURE METHODS, 2013, 10 (10) : 949 - 955
  • [9] Recommendations for the design and analysis of epigenome-wide association studies
    Karin B Michels
    Alexandra M Binder
    Sarah Dedeurwaerder
    Charles B Epstein
    John M Greally
    Ivo Gut
    E Andres Houseman
    Benedetta Izzi
    Karl T Kelsey
    Alexander Meissner
    Aleksandar Milosavljevic
    Kimberly D Siegmund
    Christoph Bock
    Rafael A Irizarry
    Nature Methods, 2013, 10 : 949 - 955
  • [10] Epigenome-wide association studies for common human diseases
    Vardhman K. Rakyan
    Thomas A. Down
    David J. Balding
    Stephan Beck
    Nature Reviews Genetics, 2011, 12 : 529 - 541