ψα-ESTIMATES FOR MARGINALS OF LOG-CONCAVE PROBABILITY MEASURES

被引:4
|
作者
Giannopoulos, A. [1 ]
Paouris, G. [2 ]
Valettas, P. [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Log-concave probability measures; random marginals; isotropic constant; CENTRAL-LIMIT-THEOREM; MEAN-WIDTH; CONVEX;
D O I
10.1090/S0002-9939-2011-10984-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a random marginal pi F(mu) of an isotropic log-concave probability measure mu on R-n exhibits better psi(alpha)-behavior. For a natural variant psi'(alpha) of the standard psi(alpha)-norm we show the following: (i) If k <= root n, then for a random F epsilon G(n,k) we have that pi F(mu) is a psi'(2) measure. We complement this result by showing that a random pi F(mu) is, at the same time, super-Gaussian. (ii) If k = n(delta), 1/2 < delta < 1, then for a random F epsilon G(n,k) we have that pi F(mu) is a psi'(alpha)(delta) = 2 delta/3 delta-1
引用
收藏
页码:1297 / 1308
页数:12
相关论文
共 50 条