ψα-ESTIMATES FOR MARGINALS OF LOG-CONCAVE PROBABILITY MEASURES

被引:4
|
作者
Giannopoulos, A. [1 ]
Paouris, G. [2 ]
Valettas, P. [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Log-concave probability measures; random marginals; isotropic constant; CENTRAL-LIMIT-THEOREM; MEAN-WIDTH; CONVEX;
D O I
10.1090/S0002-9939-2011-10984-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a random marginal pi F(mu) of an isotropic log-concave probability measure mu on R-n exhibits better psi(alpha)-behavior. For a natural variant psi'(alpha) of the standard psi(alpha)-norm we show the following: (i) If k <= root n, then for a random F epsilon G(n,k) we have that pi F(mu) is a psi'(2) measure. We complement this result by showing that a random pi F(mu) is, at the same time, super-Gaussian. (ii) If k = n(delta), 1/2 < delta < 1, then for a random F epsilon G(n,k) we have that pi F(mu) is a psi'(alpha)(delta) = 2 delta/3 delta-1
引用
收藏
页码:1297 / 1308
页数:12
相关论文
共 50 条
  • [21] On isoperimetric constants for log-concave probability distributions
    Bobkov, S. G.
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2007, 1910 : 81 - 88
  • [22] Surface area measures of log-concave functions
    Liran Rotem
    Journal d'Analyse Mathématique, 2022, 147 : 373 - 400
  • [23] On the existence of subgaussian directions for log-concave measures
    Giannopoulos, A.
    Paouris, G.
    Valettas, P.
    CONCENTRATION, FUNCTIONAL INEQUALITIES AND ISOPERIMETRY, 2011, 545 : 103 - +
  • [24] Surface area measures of log-concave functions
    Rotem, Liran
    JOURNAL D ANALYSE MATHEMATIQUE, 2022, 147 (01): : 373 - 400
  • [25] On the Equivalence of Modes of Convergence for Log-Concave Measures
    Meckes, Elizabeth S.
    Meckes, Mark W.
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2011-2013, 2014, 2116 : 385 - 394
  • [26] DUAL CURVATURE MEASURES FOR LOG-CONCAVE FUNCTIONS
    Huang, Yong
    Liu, Jiaqian
    Xi, Dongmeng
    Zhao, Yiming
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 128 (02) : 815 - 860
  • [27] Geometric and Functional Inequalities for Log-Concave Probability Sequences
    Marsiglietti, Arnaud
    Melbourne, James
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (02) : 556 - 586
  • [28] Geometric and Functional Inequalities for Log-Concave Probability Sequences
    Arnaud Marsiglietti
    James Melbourne
    Discrete & Computational Geometry, 2024, 71 : 556 - 586
  • [29] A note on statistical distances for discrete log-concave measures
    Marsiglietti, Arnaud
    Pandey, Puja
    STATISTICS & PROBABILITY LETTERS, 2025, 216
  • [30] A simple proof of the Poincare inequality for a large class of probability measures including the log-concave case
    Bakry, Dominique
    Barthe, Franck
    Cattiaux, Patrick
    Guillin, Arnaud
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 60 - 66