ψα-ESTIMATES FOR MARGINALS OF LOG-CONCAVE PROBABILITY MEASURES

被引:4
|
作者
Giannopoulos, A. [1 ]
Paouris, G. [2 ]
Valettas, P. [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Log-concave probability measures; random marginals; isotropic constant; CENTRAL-LIMIT-THEOREM; MEAN-WIDTH; CONVEX;
D O I
10.1090/S0002-9939-2011-10984-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a random marginal pi F(mu) of an isotropic log-concave probability measure mu on R-n exhibits better psi(alpha)-behavior. For a natural variant psi'(alpha) of the standard psi(alpha)-norm we show the following: (i) If k <= root n, then for a random F epsilon G(n,k) we have that pi F(mu) is a psi'(2) measure. We complement this result by showing that a random pi F(mu) is, at the same time, super-Gaussian. (ii) If k = n(delta), 1/2 < delta < 1, then for a random F epsilon G(n,k) we have that pi F(mu) is a psi'(alpha)(delta) = 2 delta/3 delta-1
引用
收藏
页码:1297 / 1308
页数:12
相关论文
共 50 条
  • [1] SMALL BALL PROBABILITY ESTIMATES FOR LOG-CONCAVE MEASURES
    Paouris, Grigoris
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (01) : 287 - 308
  • [2] LOG-CONCAVE MEASURES
    Feyel, D.
    Uestuenel, A. S.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 1 (01): : 92 - 105
  • [3] Isoperimetry for spherically symmetric log-concave probability measures
    Huet, Nolwen
    REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) : 93 - 122
  • [4] Isoperimetric and analytic inequalities for log-concave probability measures
    Bobkov, SG
    ANNALS OF PROBABILITY, 1999, 27 (04): : 1903 - 1921
  • [5] Spectral gap for log-concave probability measures on the real line
    Fougères, P
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 95 - 123
  • [6] On convex bodies and log-concave probability measures with unconditional basis
    Bobkov, SG
    Nazarov, FL
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2003, 1807 : 53 - 69
  • [7] Half-space depth of log-concave probability measures
    Brazitikos, Silouanos
    Giannopoulos, Apostolos
    Pafis, Minas
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 188 (1-2) : 309 - 336
  • [8] Half-space depth of log-concave probability measures
    Silouanos Brazitikos
    Apostolos Giannopoulos
    Minas Pafis
    Probability Theory and Related Fields, 2024, 188 : 309 - 336
  • [9] SPECTRAL GAP FOR SOME INVARIANT LOG-CONCAVE PROBABILITY MEASURES
    Huet, Nolwen
    MATHEMATIKA, 2011, 57 (01) : 51 - 62
  • [10] Log-concave probability and its applications
    Bagnoli, M
    Bergstrom, T
    ECONOMIC THEORY, 2005, 26 (02) : 445 - 469