Uniform persistence of asymptotically periodic multispecies competition predator-prey systems with Holling III type functional response

被引:5
|
作者
Wei, FY [1 ]
Wang, K
机构
[1] NE Normal Univ, Dept Math & Stat, Changchun 130024, Peoples R China
[2] Harbin Inst Technol, Dept Math, Shandong 264209, Peoples R China
基金
中国国家自然科学基金;
关键词
uniform persistence; asymptotically periodic;
D O I
10.1016/j.amc.2004.12.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we studied the persistence Of the asymptotically periodic multispecies competition predator-prey system with Holling III type functional response. Further, by use of the Standard Comparison Theorem, we improved the results of paper [C. Chen, F. Chen, Conditions for global attractivity of multispecies ecological competition-predator system with Holling III type functional response, Journal of Biomathematics 19(2) (2004) 136-140]. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:994 / 998
页数:5
相关论文
共 50 条
  • [31] Study of a Predator-Prey Model with Holling Type N Functional Response
    Yu, Jie
    Sun, Fuqin
    Chao, Yuyuan
    2020 6TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2020, : 736 - 740
  • [32] Hopf bifurcation in a predator-prey system with Holling type III functional response and time delays
    Zhang Z.
    Yang H.
    Fu M.
    Journal of Applied Mathematics and Computing, 2014, 44 (1-2) : 337 - 356
  • [33] A derivation of Holling's type I, II and III functional responses in predator-prey systems
    Dawes, J. H. P.
    Souza, M. O.
    JOURNAL OF THEORETICAL BIOLOGY, 2013, 327 : 11 - 22
  • [34] Positive periodic solution for a multispecies competition-predator system with Holling III functional response and time delays
    Cai, Zuowei
    Huang, Lihong
    Chen, Haibo
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (10) : 4866 - 4878
  • [35] Canard cycles for predator-prey systems with Holling types of functional response
    Li, Chengzhi
    Zhu, Huaiping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 879 - 910
  • [36] Dynamical behavior of a stochastic predator-prey model with Holling-type III functional response and infectious predator
    Qin, Chuangliang
    Du, Jinji
    Hui, Yuanxian
    AIMS MATHEMATICS, 2022, 7 (05): : 7403 - 7418
  • [37] Persistence and bifurcation analysis on a predator-prey system of holling type
    Mukherjee, D
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02): : 339 - 344
  • [38] Uniform Persistence and Periodic Solutions of Generalized Predator-Prey Type Eco-Epidemiological Systems
    Sun, Mengfeng
    Chen, Guoting
    Fu, Xinchu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (02):
  • [39] Bifurcations of a predator-prey system with cooperative hunting and Holling III functional response
    Yao, Yong
    Song, Teng
    Li, Zuxiong
    NONLINEAR DYNAMICS, 2022, 110 (01) : 915 - 932
  • [40] Positive periodic solutions for neutral delay ratio-dependent predator-prey model with Holling type III functional response
    Liu, Guirong
    Yan, Jurang
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) : 4341 - 4348