Uniform persistence of asymptotically periodic multispecies competition predator-prey systems with Holling III type functional response

被引:5
|
作者
Wei, FY [1 ]
Wang, K
机构
[1] NE Normal Univ, Dept Math & Stat, Changchun 130024, Peoples R China
[2] Harbin Inst Technol, Dept Math, Shandong 264209, Peoples R China
基金
中国国家自然科学基金;
关键词
uniform persistence; asymptotically periodic;
D O I
10.1016/j.amc.2004.12.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we studied the persistence Of the asymptotically periodic multispecies competition predator-prey system with Holling III type functional response. Further, by use of the Standard Comparison Theorem, we improved the results of paper [C. Chen, F. Chen, Conditions for global attractivity of multispecies ecological competition-predator system with Holling III type functional response, Journal of Biomathematics 19(2) (2004) 136-140]. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:994 / 998
页数:5
相关论文
共 50 条
  • [21] Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response
    Huang, Jicai
    Ruan, Shigui
    Song, Jing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) : 1721 - 1752
  • [22] Persistence and global stability in a delayed predator-prey system with Holling-type functional response
    Xu, R
    Chen, LS
    Chaplain, MAJ
    ANZIAM JOURNAL, 2004, 46 : 121 - 141
  • [23] Periodic solutions of density dependent predator-prey systems with Holling Type 2 functional response and infinite delays
    Ye, D
    Fan, M
    Zhang, WP
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2005, 85 (03): : 213 - 221
  • [24] Periodic solutions for a predator-prey model with Holling-type functional response and time delays
    Rui, X
    Chaplain, MAJ
    Davidson, FA
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (02) : 637 - 654
  • [25] Periodic Solution of Impulsive predator-prey System with Holling-Tanner Type Functional Response
    Xing, Chunbo
    Zhan, Jiqui
    PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 58 - 62
  • [26] Dispersal permanence of a periodic predator-prey system with Holling type-IV functional response
    Huang, Meihua
    Li, Xuepeng
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (02) : 502 - 513
  • [27] Spatiotemporal Patterns of a Predator-Prey System with an Allee Effect and Holling Type III Functional Response
    Li, Yuanyuan
    Wang, Jinfeng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (05):
  • [28] Spatiotemporal Patterns of a Homogeneous Diffusive Predator-Prey System with Holling Type III Functional Response
    Wang, Jinfeng
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (04) : 1383 - 1409
  • [29] Traveling waves in a diffusive predator-prey model with holling type-III functional response
    Li, Wan-Tong
    Wu, Shi-Liang
    CHAOS SOLITONS & FRACTALS, 2008, 37 (02) : 476 - 486
  • [30] Stability and bifurcation analysis of a discrete predator-prey model with Holling type III functional response
    Zhang, Jiangang
    Deng, Tian
    Chu, Yandong
    Qin, Shuang
    Du, Wenju
    Luo, Hongwei
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6228 - 6243