Automatic calibration of a whole-of-basin water accounting model using a comprehensive learning particle swarm optimiser

被引:8
|
作者
Gao, Lei [1 ]
Kirby, Mac [2 ]
Ahmad, Mobin-ud-Din [2 ]
Mainuddin, Mohammed [2 ]
Bryan, Brett A. [1 ,3 ]
机构
[1] CSIRO Land & Water, Private Mail Bag 2,Waite Rd, Glen Osmond, SA 5064, Australia
[2] CSIRO Land & Water, GPO Box 1666, Canberra, ACT 2601, Australia
[3] Deakin Univ, Ctr Integrat Ecol, Bwwood, Vic 3125, Australia
关键词
Model calibration; Parameterisation; Particle swami optimisation; Hydrological models; Rivers; Irrigation; FLOW-DURATION CURVES; MURRAY-DARLING BASIN; MULTIOBJECTIVE OPTIMIZATION; GLOBAL OPTIMIZATION; HYDROLOGIC MODEL; SENSITIVITY-ANALYSIS; DEEP UNCERTAINTY; RUNOFF; MANAGEMENT; ALGORITHMS;
D O I
10.1016/j.jhydrol.2019.124281
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
We present a two-step framework for calibrating complex, many-parameter hydrological models at basin-scale. The framework first calibrates parameters for each catchment/sub-basin sequentially and then fine-tunes parameters as needed. We implemented a comprehensive learning particle swarm optimiser (CLPSO) as the calibrator and applied the two-step CLPSO tool in calibrating parameters of a water accounting model for the Murray-Darling Basin, Australia. The visual and quantitative results indicated that our tool produced satisfactory calibration and prediction outcomes for the model's intended purpose. The comparison experiments demonstrated that the calibration framework and the CLPSO were competent in calibrating large-scale hydrological models. This framework can guarantee spatial coherence, balance objective trade-offs among all catchments, and calibrate many parameters at a low computational cost. By providing better parameter estimates in complex whole-of-basin hydrological models, our calibration tool has the potential to increase the development and application of these models, and thereby improve the management of large river basins.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Improving comprehensive learning particle swarm optimiser using generalised opposition-based learning
    Wang, Wenjun
    Wang, Hui
    Rahnamayan, Shahryar
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 14 (04) : 310 - 316
  • [2] Calibration of Soil Model Parameters Using Particle Swarm Optimization
    Yazdi, J. Sadoghi
    Kalantary, F.
    Yazdi, H. Sadoghi
    [J]. INTERNATIONAL JOURNAL OF GEOMECHANICS, 2012, 12 (03) : 229 - 238
  • [3] Automatic calibration of a rainfall-runoff model using a fast and elitist multi-objective particle swarm algorithm
    Liu, Yang
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (05) : 9533 - 9538
  • [4] A tool for automatic determination of model parameters using particle swarm optimization
    Nzale, Willy
    Ashourian, Hossein
    Mahseredjian, Jean
    Gras, Henry
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2023, 219
  • [5] Automatic mining of model predictive control using particle swarm optimization
    Suzuki, Ryohei
    Kawai, Fukiko
    Ito, Hideyuki
    Nakazawa, Chikashi
    Fukuyama, Yoshikazu
    Aiyoshi, Eitaro
    [J]. 2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, : 221 - +
  • [6] Calibration of water quality model for distribution networks using genetic algorithm, particle swarm optimization, and hybrid methods
    Minaee, Roya Peirovi
    Afsharnia, Mojtaba
    Moghaddam, Alireza
    Ebrahimi, Ali Asghar
    Askarishahi, Mohsen
    Mokhtari, Mehdi
    [J]. METHODSX, 2019, 6 : 540 - 548
  • [7] vHuman Perception-based Color Image Segmentation Using Comprehensive Learning Particle Swarm OptimizationHuman Perception-based Color Image Segmentation Using Comprehensive Learning Particle Swarm Optimization
    Puranik, Parag
    Bajaj, Preeti
    Abraham, Ajith
    Palsodkar, Prasanna
    Deshmukh, Amol
    [J]. 2009 SECOND INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING AND TECHNOLOGY (ICETET 2009), 2009, : 1002 - +
  • [8] CONCENTRIC CIRCULAR ANTENNA ARRAY SYNTHESIS USING COMPREHENSIVE LEARNING PARTICLE SWARM OPTIMIZER
    Elsaidy, S.
    Dessouky, M.
    Khamis, S.
    Albagory, Y.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2012, 29 : 1 - 13
  • [9] Design of Yagi-Uda antennas using comprehensive learning particle swarm optimisation
    Baskar, S
    Alphones, A
    Suganthan, PN
    Liang, JJ
    [J]. IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 2005, 152 (05) : 340 - 346
  • [10] Calibration of a water and energy balance model: Recursive parameter estimation versus particle swarm optimization
    Scheerlinck, Karolien
    Pauwels, Valentijn R. N.
    Vernieuwe, Hilde
    De Baets, Bernard
    [J]. WATER RESOURCES RESEARCH, 2009, 45