The spectral decomposition of shifted convolution sums

被引:31
|
作者
Blomer, Valentin [1 ]
Harcos, Gergely [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
基金
美国国家科学基金会;
关键词
D O I
10.1215/00127094-2008-038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi(1), pi(2)) be cuspidal automorphic representations of PGL(2)(R) Qf conductor 1 and Hecke eigenvalues lambda(pi 1,2) (n) and let h > 0 be an integer. For any smooth compactly supported weight functions W-1,W-2 : R-x --> C and any Y > 0, aspectral decomposition of the shifted convolution sum Sigma(m+/-n=h) lambda(pi 1) (vertical bar m vertical bar)lambda(pi 2) (vertical bar n vertical bar)/root vertical bar mn vertical bar W-1(m/Y)W-2(n/Y) is obtained. As an application, aspectral decomposition of the Dirichlet series [GRAPHICS] is proved for Rs > 1/2 with polynomial growth on vertical lines in the S-aspect and uniformity in the h-aspect.
引用
收藏
页码:321 / 339
页数:19
相关论文
共 50 条