Averages of shifted convolution sums for GL(3) x GL(2)

被引:10
|
作者
Sun, Qingfeng [1 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Averages; Shifted convolution sums; GL(3) x GL(2); SELBERG L-FUNCTIONS; EQUIDISTRIBUTION;
D O I
10.1016/j.jnt.2017.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(f) (1, n) be the normalized Fourier coefficients of a GL(3) Hecke Maass cusp forth f and let a(g)(n) be the normalized Fourier coefficients of a GL(2) cusp form g. Let lambda(n) be either Af (1, n) or the triple divisor function d(3)(n). It is proved that for any epsilon > 0, any integer r >= 1 and r(5/2)X(1/4+7 delta/2) <= H <= X with delta > 0, 1/H Sigma W-h >= 1 (h/H) Sigma(n >= 1) lambda(n)a(g) (rn + h)V (n/X) << X1-delta+epsilon , where V and W are smooth compactly supported functions, and the implied constants depend only on the associated forms and epsilon. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:344 / 362
页数:19
相关论文
共 50 条