OSTROWSKI-GRUSS TYPE INEQUALITIES AND A 2D OSTROWSKI TYPE INEQUALITY ON TIME SCALES INVOLVING A COMBINATION OF Δ-INTEGRAL MEANS

被引:0
|
作者
Kermausuor, Seth [1 ]
Nwaeze, Eze R. [2 ]
机构
[1] Alabama State Univ, Dept Math & Comp Sci, Montgomery, AL 36101 USA
[2] Tuskegee Univ, Dept Math, Tuskegee, AL 36088 USA
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2020年 / 44卷 / 01期
关键词
Montgomery identity; Ostrowski's inequality; Ostrowski-Gruss inequality; Delta-integral means; double integrals; time scales;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derived two Ostrowski-Gruss type inequalities on time scales involving a combination of Delta-integral means. One of the inequalities is sharp. We also obtained 2-dimensional Ostrowski type inequality involving a combination of Delta-integral means. Our results extend some known results in the literature. Furthermore, we apply our results to the continuous, discrete and quantum calculus to obtain some interesting inequalities in these directions.
引用
收藏
页码:127 / 143
页数:17
相关论文
共 50 条
  • [21] Generalizations of Ostrowski-Gruss type integral inequalities for twice differentiable mappings
    Park, Jaekeun
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 39 (09): : 10 - 23
  • [22] Some new generalizations of Ostrowski type inequalities on time scales involving combination of Δ-integral means
    Jiang, Yong
    Ruzgar, Huseyin
    Liu, Wenjun
    Tuna, Adnan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2014, 7 (05): : 311 - 324
  • [23] A unified approach to some inequalities of Ostrowski-Gruss type
    Yang, SJ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (6-7) : 1047 - 1056
  • [24] TWO NEW SHARP OSTROWSKI-GRUSS TYPE INEQUALITIES
    Liu, Zheng
    MATEMATICHE, 2013, 68 (02): : 3 - 14
  • [25] ON THE OSTROWSKI-GRUSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS
    Ozdemir, M. Emin
    Akdemir, Ahmet Ocak
    Set, Erhan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (05): : 651 - 655
  • [26] Estimates for weighted Ostrowski-Gruss type inequalities with applications
    Shaikh, Muhammad Awais
    Khan, Asif R. R.
    Mehmood, Faraz
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2022, 42 (03): : 159 - 169
  • [27] New version of generalized Ostrowski-Gruss type inequality
    Bilal, Muhammad
    Irshad, Nazia
    Khan, Asif R.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (03): : 441 - 455
  • [28] Improvement and further generalization of inequalities of Ostrowski-Gruss type
    Matic, M
    Pecaric, J
    Ujevic, N
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (3-4) : 161 - 175
  • [29] TIME SCALE VERSIONS OF THE OSTROWSKI-GRUSS TYPE INEQUALITY WITH A PARAMETER FUNCTION
    Nwaeze, Eze R.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 531 - 543
  • [30] WEIGHTED OSTROWSKI, TRAPEZOID AND GRUSS TYPE INEQUALITIES ON TIME SCALES
    Liu, Wenjun
    Tuna, Adnan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (03): : 381 - 399