OSTROWSKI-GRUSS TYPE INEQUALITIES AND A 2D OSTROWSKI TYPE INEQUALITY ON TIME SCALES INVOLVING A COMBINATION OF Δ-INTEGRAL MEANS

被引:0
|
作者
Kermausuor, Seth [1 ]
Nwaeze, Eze R. [2 ]
机构
[1] Alabama State Univ, Dept Math & Comp Sci, Montgomery, AL 36101 USA
[2] Tuskegee Univ, Dept Math, Tuskegee, AL 36088 USA
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2020年 / 44卷 / 01期
关键词
Montgomery identity; Ostrowski's inequality; Ostrowski-Gruss inequality; Delta-integral means; double integrals; time scales;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derived two Ostrowski-Gruss type inequalities on time scales involving a combination of Delta-integral means. One of the inequalities is sharp. We also obtained 2-dimensional Ostrowski type inequality involving a combination of Delta-integral means. Our results extend some known results in the literature. Furthermore, we apply our results to the continuous, discrete and quantum calculus to obtain some interesting inequalities in these directions.
引用
收藏
页码:127 / 143
页数:17
相关论文
共 50 条
  • [11] A SHARP OSTROWSKI-GRUSS TYPE INEQUALITY
    Liu, Zheng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (02): : 243 - 253
  • [12] A NEW OSTROWSKI-GRUSS TYPE INEQUALITY
    Miao, Yu
    Han, Fei
    Mu, Jianyong
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2013, 37 (02): : 307 - 317
  • [13] Generalizations of some inequalities of Ostrowski-Gruss type
    Pearce, CEM
    Pecaric, J
    Ujevic, N
    Varosanec, S
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2000, 3 (01): : 25 - 34
  • [14] Some Ostrowski-Gruss type inequalities and applications
    Liu, Zheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (01) : 73 - 79
  • [15] Improved weighted Ostrowski-Gruss type inequalities
    Roumeliotis, J
    INEQUALITY THEORY AND APPLICATIONS VOL 3, 2003, : 153 - 160
  • [16] NEW FRACTIONAL INEQUALITIES OF OSTROWSKI-GRUSS TYPE
    Sarikaya, M. Zeki
    Yaldiz, H.
    Basak, N.
    MATEMATICHE, 2014, 69 (01): : 227 - 235
  • [17] Two-point Ostrowski and Ostrowski-Gruss type inequalities with applications
    Alomari, Mohammad W.
    JOURNAL OF ANALYSIS, 2020, 28 (03): : 623 - 661
  • [18] A NEW SHARP OSTROWSKI-GRUSS TYPE INEQUALITY
    Liu, Zheng
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 6 (03): : 211 - 224
  • [19] Improvement of some Ostrowski-Gruss type inequalities
    Cheng, XL
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (1-2) : 109 - 114
  • [20] NOTE ON THE DISCRETE OSTROWSKI-GRUSS TYPE INEQUALITY
    Miao, Yu
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (01): : 93 - 98