Reflection on modern methods: Dynamic prediction using joint models of longitudinal and time-to-event data

被引:11
|
作者
Andrinopoulou, Eleni-Rosalina [1 ]
Harhay, Michael O. [2 ,3 ,4 ]
Ratcliffe, Sarah J. [5 ]
Rizopoulos, Dimitris [1 ]
机构
[1] Erasmus MC, Dept Biostat, Rotterdam, Netherlands
[2] Univ Penn, Dept Biostat Epidemiol & Informat, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Palliat & Adv Illness Res PAIR Ctr, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Med, Pulm Allergy & Crit Care Div, Philadelphia, PA 19104 USA
[5] Univ Virginia, Dept Publ Hlth Sci, Div Biostat, Charlottesville, VA USA
基金
美国国家卫生研究院;
关键词
Joint model; longitudinal outcome; survival outcome; dynamic predictions; personalized risk predictions; PROSTATE-CANCER; SURVIVAL;
D O I
10.1093/ije/dyab047
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Individualized prediction is a hallmark of clinical medicine and decision making. However, most existing prediction models rely on biomarkers and clinical outcomes available at a single time. This is in contrast to how health states progress and how physicians deliver care, which relies on progressively updating a prognosis based on available information. With the use of joint models of longitudinal and survival data, it is possible to dynamically adjust individual predictions regarding patient prognosis. This article aims to introduce the reader to the development of dynamic risk predictions and to provide the necessary resources to support their implementation and assessment, such as adaptable R code, and the theory behind the methodology. Furthermore, measures to assess the predictive performance of the derived predictions and extensions that could improve the predictions are presented. We illustrate personalized predictions using an online dataset consisting of patients with chronic liver disease (primary biliary cirrhosis).
引用
收藏
页码:1731 / 1743
页数:13
相关论文
共 50 条
  • [1] Dynamic predictions using flexible joint models of longitudinal and time-to-event data
    Barrett, Jessica
    Su, Li
    [J]. STATISTICS IN MEDICINE, 2017, 36 (09) : 1447 - 1460
  • [2] Boosting joint models for longitudinal and time-to-event data
    Waldmann, Elisabeth
    Taylor-Robinson, David
    Klein, Nadja
    Kneib, Thomas
    Pressler, Tania
    Schmid, Matthias
    Mayr, Andreas
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (06) : 1104 - 1121
  • [3] Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data
    Rizopoulos, Dimitris
    [J]. BIOMETRICS, 2011, 67 (03) : 819 - 829
  • [4] Joint Models for Incomplete Longitudinal Data and Time-to-Event Data
    Takeda, Yuriko
    Misumi, Toshihiro
    Yamamoto, Kouji
    [J]. MATHEMATICS, 2022, 10 (19)
  • [5] Dynamic prediction of outcome for patients with severe aortic stenosis: application of joint models for longitudinal and time-to-event data
    Andrinopoulou, Eleni-Rosalina
    Rizopoulos, Dimitris
    Geleijnse, Marcel L.
    Lesaffre, Emmanuel
    Bogers, Ad J. J. C.
    Takkenberg, Johanna J. M.
    [J]. BMC CARDIOVASCULAR DISORDERS, 2015, 15
  • [6] Dynamic prediction of outcome for patients with severe aortic stenosis: application of joint models for longitudinal and time-to-event data
    Eleni-Rosalina Andrinopoulou
    Dimitris Rizopoulos
    Marcel L. Geleijnse
    Emmanuel Lesaffre
    Ad J. J. C. Bogers
    Johanna J. M. Takkenberg
    [J]. BMC Cardiovascular Disorders, 15
  • [7] Joint longitudinal and time-to-event models for multilevel hierarchical data
    Brilleman, Samuel L.
    Crowther, Michael J.
    Moreno-Betancur, Margarita
    Novik, Jacqueline Buros
    Dunyak, James
    Al-Huniti, Nidal
    Fox, Robert
    Hammerbacher, Jeff
    Wolfe, Rory
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (12) : 3502 - 3515
  • [8] Sequential Monte Carlo methods in Bayesian joint models for longitudinal and time-to-event data
    Alvares, Danilo
    Armero, Carmen
    Forte, Anabel
    Chopin, Nicolas
    [J]. STATISTICAL MODELLING, 2021, 21 (1-2) : 161 - 181
  • [9] Penalized spline joint models for longitudinal and time-to-event data
    Pham Thi Thu Huong
    Nur, Darfiana
    Branford, Alan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (20) : 10294 - 10314
  • [10] Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging
    Rizopoulos, Dimitris
    Hatfield, Laura A.
    Carlin, Bradley P.
    Takkenberg, Johanna J. M.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (508) : 1385 - 1397