Structural Design and Finite Element Simulation Analysis of Grade 3 Graded Porous Titanium Implant

被引:9
|
作者
Liu, Bowen [1 ,2 ]
Xu, Wei [1 ,2 ]
Chen, Mingying [3 ]
Chen, Dongdong [2 ]
Sun, Guyu [2 ]
Zhang, Ce [2 ]
Pan, Yu [2 ]
Lu, Jinchao [2 ]
Guo, Enbo [2 ]
Lu, Xin [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Shunde Grad Sch, Foshan 528399, Peoples R China
[2] Univ Sci & Technol Beijing, Natl Engn Res Ctr Adv Rolling & Intelligent Mfg, Inst Engn Technol, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 北京市自然科学基金;
关键词
titanium; gradient porous structure; oral implant; mechanical properties; biocompatibility; CORTICAL BONE THICKNESS; PORE-SIZE; MICROMOTION; SCAFFOLDS; BIOMATERIALS; DENSITY;
D O I
10.3390/ijms231710090
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The metal titanium is often used as a dental implant material, and the elastic modulus of solid titanium implants does not match the biological bone tissue, which can easily produce a stress shielding effect and cause implant failure. In this paper, a three-level gradient porous structure implant was designed, and its mechanical and biological adaptability were studied by finite element simulation analysis. Combined with the comprehensive evaluation of the mechanical and biological properties of implants of various structures, the analysis found that a porous implant with porosity of 59.86% of the gradient was the best structure. The maximum equivalent stress of this structure in the mandible that simulated the oral environment was 154.34 MPa, which was less than half of its theoretical compression yield strength. The strain of the surrounding bone tissue lies in the bone compared with other structures, the proportion of the active state of plastic construction is larger, at 10.51%, and the fretting value of this structure and the bone tissue interface is the smallest, at only 10 mu m.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Design and Analysis of Customized Hip Implant Using Finite Element Method
    Priya, M. Anu
    Snekhalatha, U.
    Mahalakshmi, R.
    Dhivya, T.
    Gupta, Nilkantha
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY COMPUTATIONS IN ENGINEERING SYSTEMS, 2020, 1056 : 515 - 525
  • [22] Effect of elbow implant design parameters on loosening: A finite element analysis
    Heidari, Milad
    Rahmanivahid, Pooyan
    Sharifi, Sayyed Nabi Al-Din
    Hashemi, Mehdi
    Mohammadian, Erfan
    Akbari, Amir
    Razaviyan, Zahrapanah
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2020, 36 (01):
  • [23] Preliminary evaluation of a new dental implant design with finite element analysis
    Wang, XJ
    Wang, R
    Luo, JM
    Chen, JY
    Zhang, XD
    ASBM6: ADVANCED BIOMATERIALS VI, 2005, 288-289 : 657 - 660
  • [24] A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams
    Aria, Arash Imani
    Rabczuk, Timon
    Friswell, Michael Ian
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2019, 77
  • [25] Finite Element Analysis of a TMJ Implant
    Kashi, A.
    Chowdhury, A. Roy
    Saha, S.
    JOURNAL OF DENTAL RESEARCH, 2010, 89 (03) : 241 - 245
  • [26] Finite element analysis of a transmandibular implant
    Nomura, Tsutomu
    Powers, Michael P.
    Katz, J. Lawrence
    Saito, Chikara
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2007, 80B (02) : 370 - 376
  • [27] FINITE ELEMENT ANALYSIS OF CRANIAL IMPLANT
    Chamrad, J.
    Marcian, P.
    Borak, L.
    Wolff, J.
    ENGINEERING MECHANICS 2016, 2016, : 234 - 237
  • [28] FINITE ELEMENT ANALYSIS OF TMJ IMPLANT
    Kashi, Ajay
    Chowdhury, Amit Roy
    Saha, Subrata
    PROCEEDINGS OF THE 4TH FRONTIERS IN BIOMEDICAL DEVICES CONFERENCE AND EXPOSITION - 2009, 2009, : 93 - 94
  • [29] Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK
    Carpenter, R. Dana
    Klosterhoff, Brett S.
    Torstrick, F. Brennan
    Foley, Kevin T.
    Burkus, J. Kenneth
    Lee, Christopher S. D.
    Gall, Ken
    Guldberg, Robert E.
    Safranski, David L.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2018, 80 : 68 - 76
  • [30] Structural design and finite element analysis of desktop stacking manipulator
    Cheng, Qigao
    Kang, Yawei
    You, Dazhang
    2019 2ND WORLD CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT MANUFACTURING (WCMEIM 2019), 2019, : 278 - 282