Tailored porosities of the cathode layer for improved polymer electrolyte fuel cell performance

被引:31
|
作者
Zlotorowicz, A. [1 ]
Jayasayee, K. [2 ]
Dahl, P. I. [2 ]
Thomassen, M. S. [2 ]
Kjelstrup, S. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Chem, NO-7491 Trondheim, Norway
[2] SINTEF Mat & Chem, NO-7465 Trondheim, Norway
关键词
PEM fuel cell; Pt utilization; Cathode catalyst layer; Macroporosity; Pore formers; Monodispersed polystyrene particles; Mass transport limitations; CATALYST LAYERS; MEMBRANE; CARBON; MICROSTRUCTURE; OPTIMIZATION; IONOMER; MICRO;
D O I
10.1016/j.jpowsour.2015.04.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show experimentally for the first time that the introduction of macro-pores in the nanoporous catalyst layer of a polymer electrolyte membrane fuel cell can improve its performance. We have achieved a Pt utilization of about 0.23 mg W-1 at 0.6 V which is twice the value of the DOE target for 2020, and three times (0.60 mg W-1) smaller than the value of a fully nanoporous reference layer at a catalyst loading of 0.11 mg cm(-2). In this work, monodispersed polystyrene particles with diameters of 0.5 and 1 mu m were used as pore formers. Cathode catalyst layers with macroporous volume fractions between 0 and 0.58 were investigated. Maximum performance was observed for fuel cells with a macroporous volume fraction of about 0.52 for a 1 mu m thick catalyst layer. The results, which were obtained for the cathode layer, support earlier theoretical predictions that gas access to and water escape from the catalyst can be facilitated by introduction of macropores in the nanoporous layer. (C) 2015 The Authors. Published by Elsevier B.V.
引用
下载
收藏
页码:472 / 477
页数:6
相关论文
共 50 条
  • [31] Coals as a novel cathode catalyst for polymer electrolyte fuel cell
    Muraoka, Mitsuyoshi
    Nagai, Masatoshi
    FUEL, 2012, 94 (01) : 204 - 210
  • [32] Transport Phenomena Within the Cathode for a Polymer Electrolyte Fuel Cell
    Liu, Juanfang
    Oshima, Nobuyuki
    Kurihara, Eru
    HEAT TRANSFER ENGINEERING, 2011, 32 (7-8) : 609 - 615
  • [33] Numerical Study on the Effect of Gas Diffusion Layer (GDL) Properties in Cathode on the Performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC)
    Chun, Jeong Hwan
    Jo, Dong Hyun
    Lee, Ji Young
    Kim, Sung Hyun
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2012, 50 (03): : 556 - 561
  • [34] Enhanced performance of high temperature polymer electrolyte membrane fuel cell using a novel dual catalyst layer structured cathode
    Zhang, Weiqi
    Yao, Dongmei
    Tian, Liliang
    Xie, Zheng
    Ma, Qiang
    Xu, Qian
    Pasupathi, Sivakumar
    Xing, Lei
    Su, Huaneng
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2021, 125 : 285 - 290
  • [35] A study of polymer electrolyte fuel cell performance at high voltages. Dependence on cathode catalyst layer composition and on voltage conditioning
    Uribe, FA
    Zawodzinski, TA
    ELECTROCHIMICA ACTA, 2002, 47 (22-23) : 3799 - 3806
  • [36] Effects of gas-diffusion layer properties on the performance of the cathode for high-temperature polymer electrolyte membrane fuel cell
    Chun, Hyunsoo
    Kim, Do-Hyung
    Jung, Hyeon-Seung
    Sim, Jaebong
    Pak, Chanho
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (71) : 27790 - 27804
  • [37] Polymer electrolyte improves fuel cell performance
    Wood, Jonathan
    MATERIALS TODAY, 2008, 11 (06) : 8 - 8
  • [38] Performance of Pd Cathode Catalyst Electrodeposited on Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells
    Sujin Gok
    Youngkwang Kim
    Taeho Lim
    Hyun-Jong Kim
    Oh Joong Kwon
    Electrocatalysis, 2018, 9 : 59 - 66
  • [39] Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells
    Antolini, E
    Passos, RR
    Ticianelli, EA
    JOURNAL OF POWER SOURCES, 2002, 109 (02) : 477 - 482
  • [40] Performance of Pd Cathode Catalyst Electrodeposited on Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells
    Gok, Sujin
    Kim, Youngkwang
    Lim, Taeho
    Kim, Hyun-Jong
    Kwon, Oh Joong
    ELECTROCATALYSIS, 2018, 9 (01) : 59 - 66