Transport Phenomena Within the Cathode for a Polymer Electrolyte Fuel Cell

被引:2
|
作者
Liu, Juanfang [1 ,2 ]
Oshima, Nobuyuki [1 ]
Kurihara, Eru [1 ]
机构
[1] Hokkaido Univ, Grad Sch Engn, Sapporo, Hokkaido 0608628, Japan
[2] Chongqing Univ, Dept Power Engn, Chongqing 630044, Peoples R China
关键词
MODEL; 2-PHASE; TRANSIENT;
D O I
10.1080/01457632.2010.509754
中图分类号
O414.1 [热力学];
学科分类号
摘要
A one-dimensional two-phase steady model is developed to analyze the coupled phenomena of cathode flooding and mass-transport limitation for a polymer electrolyte fuel cell. In the model, the liquid water transport in the porous electrode is driven by the capillary force based on Darcy's law, while the gas transport is driven by the concentration gradient based on Fick's law. Furthermore, the catalyst layer is treated as a separate computational domain. The capillary pressure continuity is imposed on the interface between the catalyst layer and the gas diffusion layer. Additionally, through Tafel kinetics, the mass transport and the electrochemical reaction are coupled together. The saturation jump at the interface between the gas diffusion layer and the catalyst layer is captured in the results. Meanwhile, the results further indicate that the flooding situation in the catalyst layer is much more serious than that in the gas diffusion layer. Moreover, the saturation level inside the cathode is largely related to the physical, material, and operating parameters. In order to effectively prevent flooding, one should first remove the liquid water residing inside the catalyst layer and keep the boundary value of the liquid water saturation as low as possible.
引用
收藏
页码:609 / 615
页数:7
相关论文
共 50 条
  • [1] EFFECT OF OPERATING CONDITIONS ON THE WATER TRANSPORT PHENOMENA AT THE CATHODE OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL
    Seo, Sang Hern
    Lee, Chang Sik
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, 2009, : 177 - 184
  • [2] TRANSPORT PHENOMENA WITHIN THE POROUS CATHODE FOR PEM FUEL CELL
    Liu, Juanfang
    Oshima, Nubuyuki
    Kurihara, Eru
    Saha, LitanKumar
    ICNMM 2009, PTS A-B, 2009, : 313 - 319
  • [3] Membrane transport phenomena in a Polymer-Electrolyte-Fuel-Cell
    Neubrand, W
    Eigenberger, G
    Wohr, M
    Bolwin, K
    HYDROGEN ENERGY PROGRESS XI, VOLS 1-3, 1996, : 1881 - 1885
  • [4] Analyzing and Modeling of Water Transport Phenomena in Open-Cathode Polymer Electrolyte Membrane Fuel Cell
    Yuan, Wei-Wei
    Ou, Kai
    Jung, Seunghun
    Kim, Young-Bae
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [5] Experimental Study of Effects of Operating Conditions on Water Transport Phenomena in the Cathode of Polymer Electrolyte Membrane Fuel Cell
    Seo, Sang Hern
    Lee, Chang Sik
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (06):
  • [6] Transport phenomena within the porous cathode for a proton exchange membrane fuel cell
    Liu, Juanfang
    Oshima, Nobuyuki
    Kurihara, Eru
    Saha, Litan Kumar
    JOURNAL OF POWER SOURCES, 2010, 195 (19) : 6342 - 6348
  • [7] Modeling of Transport Phenomena In Polymer Electrolyte Fuel Cells
    Suh, Dong Myung
    Park, S. B.
    2010 12TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS, 2010,
  • [8] Coupling phenomena of electrochemical reaction and heat transport in polymer electrolyte fuel cell
    Masuda, Masao
    Kozawa, Yoshiyuki
    Sato, Hisayuki
    Fushinobu, Kazuyoshi
    Okazaki, Ken
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68 (665): : 209 - 217
  • [9] Calculations of transport phenomena and reaction distribution in a polymer electrolyte membrane fuel cell
    Schwarz, D. H.
    Beale, S. B.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (17-18) : 4074 - 4081
  • [10] Modeling water phenomena in the cathode side of polymer electrolyte fuel cells
    Zhang, Yufan
    Agravante, Gerard
    Kadyk, Thomas
    Eikerling, Michael H.
    ELECTROCHIMICA ACTA, 2023, 452