The quadratic eigenvalue problem

被引:981
|
作者
Tisseur, F [1 ]
Meerbergen, K
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
[2] Free Field Technol, B-1348 Louvain, Belgium
关键词
quadratic eigenvalue problem; eigenvalue; eigenvector; lambda-matrix; matrix polynomial; second-order differential equation; vibration; Millennium footbridge; overdamped system; gyroscopic system; linearization; backward error; pseudospectrum; condition number; Krylov methods; Arnoldi method; Lanczos method; Jacobi-Davidson method;
D O I
10.1137/S0036144500381988
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse. real, complex, Hermitian, skew-Hermitian) and the spectral properties of the problem. We classify numerical methods and catalogue available software.
引用
收藏
页码:235 / 286
页数:52
相关论文
共 50 条
  • [1] QUADRATIC EIGENVALUE PROBLEM
    HUGHES, E
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (02) : 319 - 326
  • [2] The Quadratic Eigenvalue Problem
    Veselic, K.
    [J]. DAMPED OSCILLATIONS OF LINEAR SYSTEMS: A MATHEMATICAL INTRODUCTION, 2011, 2023 : 121 - 127
  • [3] QUADRATIC EIGENVALUE PROBLEM
    GREENLEE, WM
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (01) : 123 - 127
  • [4] On a quadratic inverse eigenvalue problem
    Cai, Yunfeng
    Xu, Shufang
    [J]. INVERSE PROBLEMS, 2009, 25 (08)
  • [5] THE HYPERBOLIC QUADRATIC EIGENVALUE PROBLEM
    Liang, Xin
    Li, Ren-Cang
    [J]. FORUM OF MATHEMATICS SIGMA, 2015, 3
  • [6] On the quadratic eigenvalue complementarity problem
    Bras, Carmo P.
    Iusem, Alfredo N.
    Judice, Joaquim J.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2016, 66 (02) : 153 - 171
  • [7] LINEARIZATION OF THE QUADRATIC EIGENVALUE PROBLEM
    AFOLABI, D
    [J]. COMPUTERS & STRUCTURES, 1987, 26 (06) : 1039 - 1040
  • [8] On the quadratic eigenvalue complementarity problem
    Carmo P. Brás
    Alfredo N. Iusem
    Joaquim J. Júdice
    [J]. Journal of Global Optimization, 2016, 66 : 153 - 171
  • [9] THE QUADRATIC ARNOLDI METHOD FOR THE SOLUTION OF THE QUADRATIC EIGENVALUE PROBLEM
    Meerbergen, Karl
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (04) : 1463 - 1482
  • [10] TENSOR QUADRATIC EIGENVALUE COMPLEMENTARITY PROBLEM
    Li, Ya
    Du, Shouqiang
    Zhang, Liping
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (02): : 251 - 268