Tracing Long-term Value Change in (Energy) Technologies: Opportunities of Probabilistic Topic Models Using Large Data Sets

被引:11
|
作者
de Wildt, T. E. [1 ]
van de Poel, I. R. [1 ]
Chappin, E. J. L. [1 ]
机构
[1] Delft Univ Technol, Fac Technol Policy & Management, Jaffalaan, NL-2628 BX Delft, Netherlands
基金
欧洲研究理事会;
关键词
value change; probabilistic topic models; value sensitive design; energy; technology;
D O I
10.1177/01622439211054439
中图分类号
D58 [社会生活与社会问题]; C913 [社会生活与社会问题];
学科分类号
摘要
We propose a new approach for tracing value change. Value change may lead to a mismatch between current value priorities in society and the values for which technologies were designed in the past, such as energy technologies based on fossil fuels, which were developed when sustainability was not considered a very important value. Better anticipating value change is essential to avoid a lack of social acceptance and moral acceptability of technologies. While value change can be studied historically and qualitatively, we propose a more quantitative approach that uses large text corpora. It uses probabilistic topic models, which allow us to trace (new) values that are (still) latent. We demonstrate the approach for five types of value change in technology. Our approach is useful for testing hypotheses about value change, such as verifying whether value change has occurred and identifying patterns of value change. The approach can be used to trace value change for various technologies and text corpora, including scientific articles, newspaper articles, and policy documents.
引用
收藏
页码:429 / 458
页数:30
相关论文
共 50 条
  • [21] Thermal building behaviour in summer: long-term data evaluation using simplified models
    Pfafferott, J
    Herkel, S
    Wapler, J
    ENERGY AND BUILDINGS, 2005, 37 (08) : 844 - 852
  • [22] Evaluation of Recent Prediction Models Using a Long-Term Database of Rainfall Rate Data
    Garcia-del-Pino, Pedro
    Pimienta-del-Valle, Domingo
    Benarroch, Ana
    Riera, Jose M.
    2017 11TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2017, : 20 - 24
  • [23] Performance Assessment of Vessel Dynamic Models for Long-Term Prediction Using Heterogeneous Data
    Vivone, Gemine
    Millefiori, Leonardo M.
    Braca, Paolo
    Willett, Peter
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11): : 6533 - 6546
  • [24] Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets
    Barthlott, S.
    Schneider, M.
    Hase, F.
    Wiegele, A.
    Christner, E.
    Gonzalez, Y.
    Blumenstock, T.
    Dohe, S.
    Garcia, O. E.
    Sepulveda, E.
    Strong, K.
    Mendonca, J.
    Weaver, D.
    Palm, M.
    Deutscher, N. M.
    Warneke, T.
    Notholt, J.
    Lejeune, B.
    Mahieu, E.
    Jones, N.
    Griffith, D. W. T.
    Velazco, V. A.
    Smale, D.
    Robinson, J.
    Kivi, R.
    Heikkinen, P.
    Raffalski, U.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (03) : 1555 - 1573
  • [25] Long-term energy output estimation for photovoltaic energy systems using synthetic solar irradiation data
    Celik, AN
    ENERGY, 2003, 28 (05) : 479 - 493
  • [26] Long-term missing value imputation for time series data using deep neural networks
    Jangho Park
    Juliane Müller
    Bhavna Arora
    Boris Faybishenko
    Gilberto Pastorello
    Charuleka Varadharajan
    Reetik Sahu
    Deborah Agarwal
    Neural Computing and Applications, 2023, 35 : 9071 - 9091
  • [27] Long-term missing value imputation for time series data using deep neural networks
    Park, Jangho
    Muller, Juliane
    Arora, Bhavna
    Faybishenko, Boris
    Pastorello, Gilberto
    Varadharajan, Charuleka
    Sahu, Reetik
    Agarwal, Deborah
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (12): : 9071 - 9091
  • [28] Pavement Treatment Short-Term Effectiveness in IRI Change Using Long-Term Pavement Program Data
    Lu, Pan
    Tolliver, Denver
    JOURNAL OF TRANSPORTATION ENGINEERING-ASCE, 2012, 138 (11): : 1297 - 1302
  • [29] Solar cycle variation of stratospheric ozone: Multiple regression analysis of long-term satellite data sets and comparisons with models
    Soukharev, B. E.
    Hood, L. L.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D20)
  • [30] Stochastic modeling of long-term and extreme value estimation of wind and sea conditions for probabilistic reliability assessments of wave energy devices
    Ambuhl, Simon
    Kofoed, Jens Peter
    Sorensen, John Dalsgaard
    OCEAN ENGINEERING, 2014, 89 : 243 - 255