The eigenvalue problem of a singular k-Hessian equation

被引:29
|
作者
Zhang, Xinguang [1 ,3 ]
Xu, Pengtao [2 ]
Wu, Yonghong [3 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200083, Peoples R China
[3] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
基金
中国国家自然科学基金;
关键词
k-Hessian equation; Upper-lower solutions; Eigenvalue problem; Singularity; DIRICHLET PROBLEM; RADIAL SOLUTIONS; EXISTENCE; NONEXISTENCE; SUFFICIENT;
D O I
10.1016/j.aml.2021.107666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the radial solutions for the eigenvalue problem of a singular k-Hessian equation. By constructing the upper and lower solutions of the k-Hessian equation, the existence of a radial solution for the eigenvalue problem is established via Schauder's fixed point theorem under the case where the nonlinearity possesses a singularity with respect to the space variable. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] EXPLICIT EIGENVALUE INTERVALS FOR THE DIRICHLET PROBLEM OF A SINGULAR k-HESSIAN EQUATION
    Liang, Zaitao
    Zhang, Xiuqiang
    LI, Shengjun
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2022, 23 (04): : 347 - 353
  • [2] On a singular k-Hessian equation
    Zhang, Xuemei
    APPLIED MATHEMATICS LETTERS, 2019, 97 : 60 - 66
  • [3] The k-Hessian Equation
    Wang, Xu-Jia
    GEOMETRIC ANALYSIS AND PDES, 2009, 1977 : 177 - 252
  • [4] THE DIRICHLET PROBLEM FOR THE k-HESSIAN EQUATION ON A COMPLEX MANIFOLD
    Tristan, C. Collins
    Picard, Sebastien
    AMERICAN JOURNAL OF MATHEMATICS, 2022, 144 (06) : 1641 - 1680
  • [5] On a k-Hessian equation with a weakly superlinear nonlinearity and singular weights
    Feng, Meiqiang
    Zhang, Xuemei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190 (190)
  • [6] Variational formula and overdetermined problem for the principle eigenvalue of k-Hessian operator
    Dai, Qiuyi
    Shi, Feilin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) : 4136 - 4148
  • [7] The exterior Dirichlet problem for the homogeneous complex k-Hessian equation
    Gao, Zhenghuan
    Ma, Xinan
    Zhang, Dekai
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [8] Research on the Dirichlet problem for a class of augmented k-Hessian equation
    Feng, Shu
    Mi, Ling
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,
  • [9] The radial solution for an eigenvalue problem of singular augmented Hessian equation
    Zhang, Xinguang
    Tain, Hui
    Wu, Yonghong
    Wiwatanapataphee, Benchawan
    APPLIED MATHEMATICS LETTERS, 2022, 134
  • [10] A quantitative result for the k-Hessian equation
    Masiello, Alba Lia
    Salerno, Francesco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 255