Partial hyperbolicity and homoclinic tangencies

被引:27
|
作者
Crovisier, Sylvain [1 ]
Sambarino, Martin [2 ]
Yang, Dawei [3 ]
机构
[1] Univ Paris 11, CNRS, Lab Math Orsay, UMR 8628, Bat 425, F-91405 Orsay, France
[2] Univ Republica, Fac Ciencias, CMAT, Montevideo 11400, Uruguay
[3] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
关键词
Homoclinic tangency; heterodimensional cycle; hyperbolic diffeomorphism; generic dynamics; homoclinic class; partial hyperbolicity; ENTROPY; STABILITY; SETS;
D O I
10.4171/JEMS/497
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that any diffeomorphism of a compact manifold can be C-1 approximated by diffeomorphisms exhibiting a homoclinic tangency or by diffeomorphisms having a partial hyperbolic structure.
引用
收藏
页码:1 / 49
页数:49
相关论文
共 50 条
  • [21] New phenomena associated with homoclinic tangencies
    Newhouse, SE
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 1725 - 1738
  • [22] HYPERBOLICITY AND THE CREATION OF HOMOCLINIC ORBITS
    PALIS, J
    TAKENS, F
    ANNALS OF MATHEMATICS, 1987, 125 (02) : 337 - 374
  • [23] Homoclinic tangencies of an arbitrary order in newhouse domains
    Gonchenko S.V.
    Turaev D.V.
    Shil'Nikov L.P.
    Journal of Mathematical Sciences, 2001, 105 (1) : 1738 - 1778
  • [24] Homoclinic Ω-explosion and domains of hyperbolicity
    Sten'kin, OV
    Shil'nikov, LP
    SBORNIK MATHEMATICS, 1998, 189 (3-4) : 603 - 622
  • [25] Homoclinic tangencies leading to robust heterodimensional cycles
    Barrientos, Pablo G.
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (01) : 519 - 558
  • [26] Homoclinic tangencies and fractal invariants in arbitrary dimension
    Moreira, CG
    Palis, J
    Viana, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (05): : 475 - 480
  • [27] Homoclinic tangencies leading to robust heterodimensional cycles
    Pablo G. Barrientos
    Lorenzo J. Díaz
    Sebastián A. Pérez
    Mathematische Zeitschrift, 2022, 302 : 519 - 558
  • [28] Purely imaginary eigenvalues from homoclinic tangencies
    Morales, C. A.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 2005 - 2008
  • [29] Generalized Henon map and bifurcations of homoclinic tangencies
    Gonchenko, VS
    Kuznetsov, YA
    Meijer, HGE
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (02): : 407 - 436
  • [30] Classification of homoclinic tangencies for periodically perturbed systems
    Tang, Y
    Yang, FH
    Chen, GR
    Zhou, TS
    CHAOS SOLITONS & FRACTALS, 2006, 28 (01) : 76 - 89