Analog Value Associative Memory Using Restricted Boltzmann Machine

被引:4
|
作者
Tsutsui, Yuichiro [1 ]
Hagiwara, Masafumi [1 ]
机构
[1] Keio Univ, Dept Informat & Comp Sci, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
基金
日本学术振兴会;
关键词
semantic network; Restricted Boltzmann Machine; word2vec; associative memory;
D O I
10.20965/jaciii.2019.p0060
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an analog value associative memory using Restricted Boltzmann Machine (AVAM). Research on treating knowledge is becoming more and more important such as in natural language processing and computer vision fields. Associative memory plays an important role to store knowledge. First, we obtain distributed representation of words with analog values using word2vec. Then the obtained distributed representation is learned in the proposed AVAM. In the evaluation experiments, we found simple but very important phenomenon in word2vec method: almost all of the values in the generated vectors are small values. By applying traditional normalization method for each word vector, the performance of the proposed AVAM is largely improved. Detailed experimental evaluations are carried out to show superior performance of the proposed AVAM.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 50 条
  • [41] Training Restricted Boltzmann Machine Using Gradient Fixing Based Algorithm
    LI Fei
    GAO Xiaoguang
    WAN Kaifang
    ChineseJournalofElectronics, 2018, 27 (04) : 694 - 703
  • [42] Learning a restricted Boltzmann machine using biased Monte Carlo sampling
    Bereux, Nicolas
    Decelle, Aurelien
    Furtlehner, Cyril
    Seoane, Beatriz
    SCIPOST PHYSICS, 2023, 14 (03):
  • [43] An improved restricted Boltzmann Machine using Bayesian Optimization for Recommender Systems
    Kirubahari, R.
    Amali, S. Miruna Joe
    EVOLVING SYSTEMS, 2024, 15 (03) : 1099 - 1111
  • [44] Identification by Gait using Convolutional Restricted Boltzmann Machine and Voting Algorithm
    Yu, Tao
    Liu, Xingang
    Mei, Yongyong
    Dai, Cheng
    Yan, Jingren
    IEEE 2018 INTERNATIONAL CONGRESS ON CYBERMATICS / 2018 IEEE CONFERENCES ON INTERNET OF THINGS, GREEN COMPUTING AND COMMUNICATIONS, CYBER, PHYSICAL AND SOCIAL COMPUTING, SMART DATA, BLOCKCHAIN, COMPUTER AND INFORMATION TECHNOLOGY, 2018, : 677 - 681
  • [45] Ukiyo-e Recommender System Using Restricted Boltzmann Machine
    Wang, Jiayun
    Kawagoe, Kyoji
    19TH INTERNATIONAL CONFERENCE ON INFORMATION INTEGRATION AND WEB-BASED APPLICATIONS & SERVICES (IIWAS2017), 2017, : 171 - 175
  • [46] Scalable User Intent Mining using a Multimodal Restricted Boltzmann Machine
    Shang, Yue
    Ding, Wanying
    Liu, Mengwen
    Song, Xiaoli
    Hu, Tony
    An, Yuan
    Wang, Haohong
    Guo, Lifan
    2015 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2015, : 618 - 624
  • [47] Calculation of the Ground States of Spin Glasses Using a Restricted Boltzmann Machine
    Korol', A. O.
    Kapitan, V. Yu
    Perzhu, A., V
    Padalko, M. A.
    Kapitan, D. Yu
    Volotovskii, R. A.
    Vasil'ev, E. V.
    Rybin, A. E.
    Ovchinnikov, P. A.
    Andriushchenko, P. D.
    Makarov, A. G.
    Shevchenko, Yu A.
    Il'yushin, I. G.
    Soldatov, K. S.
    JETP LETTERS, 2022, 115 (08) : 466 - 470
  • [48] Spatial and Temporal Feature Extraction Using a Restricted Boltzmann Machine Model
    Hernandez, Jefferson
    Abad, Andres G.
    APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2018, 2018, 833 : 3 - 13
  • [49] Real-Time Keypoint Recognition Using Restricted Boltzmann Machine
    Yuan, Miaolong
    Tang, Huajin
    Li, Haizhou
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (11) : 2119 - 2126
  • [50] Music recommender system using restricted Boltzmann machine with implicit feedback
    Biswal, Amitabh
    Borah, Malaya Dutta
    Hussain, Zakir
    HARDWARE ACCELERATOR SYSTEMS FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2021, 122 : 367 - 402