Analog Value Associative Memory Using Restricted Boltzmann Machine

被引:4
|
作者
Tsutsui, Yuichiro [1 ]
Hagiwara, Masafumi [1 ]
机构
[1] Keio Univ, Dept Informat & Comp Sci, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
基金
日本学术振兴会;
关键词
semantic network; Restricted Boltzmann Machine; word2vec; associative memory;
D O I
10.20965/jaciii.2019.p0060
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an analog value associative memory using Restricted Boltzmann Machine (AVAM). Research on treating knowledge is becoming more and more important such as in natural language processing and computer vision fields. Associative memory plays an important role to store knowledge. First, we obtain distributed representation of words with analog values using word2vec. Then the obtained distributed representation is learned in the proposed AVAM. In the evaluation experiments, we found simple but very important phenomenon in word2vec method: almost all of the values in the generated vectors are small values. By applying traditional normalization method for each word vector, the performance of the proposed AVAM is largely improved. Detailed experimental evaluations are carried out to show superior performance of the proposed AVAM.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 50 条
  • [31] A New Sparse Restricted Boltzmann Machine
    Wei, Jiangshu
    Lv, Jiancheng
    Yi, Zhang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (10)
  • [32] Graph Regularized Restricted Boltzmann Machine
    Chen, Dongdong
    Lv, Jiancheng
    Yi, Zhang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (06) : 2651 - 2659
  • [33] MACHINE PARTS RECOGNITION USING A TRINARY ASSOCIATIVE MEMORY
    AWWAL, AAS
    KARIM, MA
    LIU, HK
    OPTICAL ENGINEERING, 1989, 28 (05) : 537 - 543
  • [34] Accident Detection in Autonomous Vehicles Using Modified Restricted Boltzmann Machine
    Roohullah
    Wahid, Fazli
    Ali, Sikandar
    Abbasi, Irshad Ahmed
    Baseer, Samad
    Khan, Habib Ullah
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [35] Entity representation for pairwise collaborative ranking using restricted Boltzmann machine
    Hazrati, Naieme
    Shams, Bita
    Haratizadeh, Saman
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 : 161 - 171
  • [36] Background subtraction using Gaussian-Bernoulli restricted Boltzmann machine
    Sheri, Ahmad Muqeem
    Rafique, Muhammad Aasim
    Jeon, Moongu
    Pedrycz, Witold
    IET IMAGE PROCESSING, 2018, 12 (09) : 1646 - 1654
  • [37] Training Restricted Boltzmann Machine Using Gradient Fixing Based Algorithm
    Li Fei
    Gao Xiaoguang
    Wan Kaifang
    CHINESE JOURNAL OF ELECTRONICS, 2018, 27 (04) : 694 - 703
  • [38] Improvement of Network Intrusion Detection Accuracy by using Restricted Boltzmann Machine
    Seo, Sanghyun
    Park, Seongchul
    Kim, Juntae
    2016 8TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2016, : 413 - 417
  • [39] Whisper-to-speech conversion using restricted Boltzmann machine arrays
    Li, Jing-jie
    McLoughlin, Ian V.
    Dai, Li-Rong
    Ling, Zhen-hua
    ELECTRONICS LETTERS, 2014, 50 (24) : 1781 - U141
  • [40] Calculation of the Ground States of Spin Glasses Using a Restricted Boltzmann Machine
    A. O. Korol’
    V. Yu. Kapitan
    A. V. Perzhu
    M. A. Padalko
    D. Yu. Kapitan
    R. A. Volotovskii
    E. V. Vasil’ev
    A. E. Rybin
    P. A. Ovchinnikov
    P. D. Andriushchenko
    A. G. Makarov
    Yu. A. Shevchenko
    I. G. Il’yushin
    K. S. Soldatov
    JETP Letters, 2022, 115 : 466 - 470