HIGH RESOLUTION POLSAR IMAGE CLASSIFICATION BASED ON GENETIC ALGORITHM AND SUPPORT VECTOR MACHINE

被引:0
|
作者
Li, P. X. [1 ]
Sun, W. D. [1 ]
Yang, J. [1 ]
Shi, L. [1 ]
Lang, F. K. [1 ]
Jiang, W. [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
来源
3RD ISPRS IWIDF 2013 | 2013年 / 40-7-W1卷
关键词
PolSAR; Classification; Feature Selection; GA; SVM;
D O I
暂无
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper focuses on backscattering mechanisms selection and supervised classification works for CETC38-X PolSAR image. Thanks to the high radar resolution, many classes of man-made objects are visible in the images. So, land-use classification becomes a more meanful application using PolSAR image, but it involves the selection of classifiers and backscattering mechanisms. In this paper we apply SVM as the classifier and GA as the features selection method. Finally, after we find the best parameters and the suitable polarimetric information, the overall accuracy is up to 97.49%. The result shows SVM is an effective algorithm compared to Wishart and BP classifiers.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [31] A Novel Technique for Subpixel Image Classification Based on Support Vector Machine
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Carlin, Lorenzo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (11) : 2983 - 2999
  • [32] SPATIAL INFORMATION BASED SUPPORT VECTOR MACHINE FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Kuo, Bor-Chen
    Huang, Chih-Sheng
    Hung, Chih-Cheng
    Liu, Yu-Lung
    Chen, I-Ling
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 832 - 835
  • [33] The study of remote sensing image classification based on support Vector Machine
    Key Research Institute of Yellow River Civilization and Sustainable Development, College of Environment and Planning, Henan University, Kaifeng 475001, China
    不详
    1600, International Frequency Sensor Association, 46 Thorny Vineway, Toronto, ON M2J 4J2, Canada (159):
  • [34] Quality classification method for fingerprint image based on support vector machine
    Zhang, Yu
    Yin, Yi-Long
    Luo, Gong-Qing
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2009, 22 (01): : 129 - 135
  • [35] An innovative support vector machine based method for contextual image classification
    Negri, Rogerio Galante
    Dutra, Luciano Vieira
    Siqueira Sant'Anna, Sidnei Joao
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 87 : 241 - 248
  • [36] Data Field-based Support Vector Machine for Image Classification
    Lin, Yi
    PROCEEDINGS OF THE 2016 3RD INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING, MANUFACTURING TECHNOLOGY AND CONTROL, 2016, 67 : 1112 - 1116
  • [37] Hyperspectral remote sensing image classification based on support vector machine
    Tan Kun
    Du Pei-Jun
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2008, 27 (02) : 123 - 128
  • [38] Hyperspectral image classification based on compound kernels of support vector machine
    Cui, Yuyong
    Zeng, Zhiyuan
    Fu, Bitao
    PROCEEDINGS OF THE 8TH INTERNATIONAL SYMPOSIUM ON SPATIAL ACCURACY ASSESSMENT IN NATURAL RESOURCES AND ENVIRONMENTAL SCIENCES, VOL II: ACCURACY IN GEOMATICS, 2008, : 263 - 269
  • [39] Hyperspectral image classification based on compsite kernels support vector machine
    Li, X.-R. (lxr@zju.edu.cn), 2013, Zhejiang University (47):
  • [40] Research on a Thangka Image Classification Method Based on Support Vector Machine
    Wang, Tiejun
    Wang, Weilan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (12)