SPATIAL INFORMATION BASED SUPPORT VECTOR MACHINE FOR HYPERSPECTRAL IMAGE CLASSIFICATION

被引:28
|
作者
Kuo, Bor-Chen [1 ]
Huang, Chih-Sheng [1 ]
Hung, Chih-Cheng [2 ]
Liu, Yu-Lung [3 ]
Chen, I-Ling [1 ]
机构
[1] Natl Taichung Univ, Grad Inst Educ Measurement & Stat, Taichung, Taiwan
[2] Southern Polytech State Univ, Sch Comp & Software Engn, Marietta, GA 30060 USA
[3] Asian Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
spatial information; hyperspectral image classification; support vector machine; spatial-contextual semi-supervised support vector machine;
D O I
10.1109/IGARSS.2010.5651433
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this study, a novel spatial information based support vector machine for hyperspectral image classification, named spatial-contextual semi-supervised support vector machine ((SCSVM)-S-3), is proposed. This approach modifies the SVM algorithm by using the spectral information and spatial-contextual information. The concept of SC3SVM is to utilize other information, obtain from the pixels of a neighborhood system in the spatial domain, to modify the effective of each patterns. Experimental results show a sound performance of classification on the famous hyperspectral images, Indian Pine site. Especially, the overall classification accuracy of whole hyperspectral image (Indian Pine site with 16 classes) is up to 96.4%, the kappa accuracy is up to 95.9%.
引用
收藏
页码:832 / 835
页数:4
相关论文
共 50 条
  • [1] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON ITERATIVE SUPPORT VECTOR MACHINE BY INTEGRATING SPATIAL-SPECTRAL INFORMATION
    Belkacem, Baassou
    He, Mingyi
    Imran, Farid Muhammad
    Mei, Shaohui
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1023 - 1026
  • [2] Spectral-Spatial Classification of Hyperspectral Image Based on Support Vector Machine
    Yang, Weiwei
    Song, Haifeng
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2021, 16 (01) : 56 - 74
  • [3] Spectral Spatial Feature Based Classification of Hyperspectral Image using Support Vector Machine
    Pathak, Diganta Kumar
    Kalita, Sanjib Kr
    2019 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2019, : 430 - 435
  • [4] Hyperspectral image classification using support vector machine: a spectral spatial feature based approach
    Diganta Kumar Pathak
    Sanjib Kumar Kalita
    Dhruba Kumar Bhattacharya
    Evolutionary Intelligence, 2022, 15 : 1809 - 1823
  • [5] Hyperspectral image classification using support vector machine: a spectral spatial feature based approach
    Pathak, Diganta Kumar
    Kalita, Sanjib Kumar
    Bhattacharya, Dhruba Kumar
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (03) : 1809 - 1823
  • [6] Hyperspectral remote sensing image classification based on support vector machine
    Tan Kun
    Du Pei-Jun
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2008, 27 (02) : 123 - 128
  • [7] Hyperspectral image classification based on compsite kernels support vector machine
    Li, X.-R. (lxr@zju.edu.cn), 2013, Zhejiang University (47):
  • [8] Hyperspectral image classification based on compound kernels of support vector machine
    Cui, Yuyong
    Zeng, Zhiyuan
    Fu, Bitao
    PROCEEDINGS OF THE 8TH INTERNATIONAL SYMPOSIUM ON SPATIAL ACCURACY ASSESSMENT IN NATURAL RESOURCES AND ENVIRONMENTAL SCIENCES, VOL II: ACCURACY IN GEOMATICS, 2008, : 263 - 269
  • [9] Deep support vector machine for hyperspectral image classification
    Okwuashi, Onuwa
    Ndehedehe, Christopher E.
    PATTERN RECOGNITION, 2020, 103
  • [10] Hyperspectral image classification using Support Vector Machine
    Moughal, T. A.
    6TH VACUUM AND SURFACE SCIENCES CONFERENCE OF ASIA AND AUSTRALIA (VASSCAA-6), 2013, 439