An averaging theorem for quasilinear Hamiltonian PDEs

被引:10
|
作者
Bambusi, D [1 ]
机构
[1] Univ Milan, Dipartmento Matemat, I-20133 Milan, Italy
来源
ANNALES HENRI POINCARE | 2003年 / 4卷 / 04期
关键词
D O I
10.1007/s00023-003-0144-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of Hamiltonian quasilinear PDEs close to elliptic equilibria. Under a suitable nonresonance condition we prove an averaging theorem according to which any solution corresponding to smooth initial data with small amplitude remains very close to a torus up to long times. An application to quasilinear wave equations in an n-dimensional paralleliped is given.
引用
收藏
页码:685 / 712
页数:28
相关论文
共 50 条