Test-Cost Sensitive Classification on Data with Missing Values in the Limited Time

被引:0
|
作者
Wan, Chang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou, Guangdong, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Much work [1] [2] has been done to deal with the test-cost sensitive learning OH data with missing values. Most of the previous works only focus on the cost while ignore the importance of time In this paper, we address how to choose the unknown attributes to be tested in the limited time in order to minimize the total cost. We propose a multi-batch strategy applying on test-cost sensitive Naive Bayes classifier and evaluate its performance on several data sets. We build graphs horn attributes and it includes the vertices cost and set cost. Then we use randomized algorithm to select the unknown attributes in each testing cycle. From the results of the experiments, our algorithms significantly outperforms previous algorithms[3][4].
引用
收藏
页码:501 / 510
页数:10
相关论文
共 50 条
  • [41] Cost-sensitive Naive Bayes Classification of Uncertain Data
    Zhang, Xing
    Li, Mei
    Zhang, Yang
    Ning, Jifeng
    JOURNAL OF COMPUTERS, 2014, 9 (08) : 1897 - 1903
  • [42] A Review of Missing Values Handling Methods on Time-Series Data
    Pratama, Irfan
    Permanasari, Adhistya Erna
    Ardiyanto, Igi
    Indrayani, Rini
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY SYSTEMS AND INNOVATION (ICITSI), 2016,
  • [43] Multiple Imputation for Missing Values in Homicide Incident Data: An Evaluation Using Unique Test Data
    Roberts, John M., Jr.
    Roberts, Aki
    Wadsworth, Tim
    HOMICIDE STUDIES, 2018, 22 (04) : 391 - 409
  • [44] Classification of Time Series of Multispectral Images With Limited Training Data
    Demir, Beguem
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (08) : 3219 - 3233
  • [45] Exploiting nearest neighbor data and fuzzy membership function to address missing values in classification
    Muludi, Kurnia
    Setianingsih, Revita
    Sholehurrohman, Ridho
    Junaidi, Akmal
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [46] Exploiting nearest neighbor data and fuzzy membership function to address missing values in classification
    Muludi K.
    Setianingsih R.
    Sholehurrohman R.
    Junaidi A.
    PeerJ Computer Science, 2024, 10
  • [47] K-ranked covariance based missing values estimation for microarray data classification
    Sehgal, MSB
    Gondal, I
    Dooley, L
    HIS'04: FOURTH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, : 274 - 279
  • [48] Exploiting nearest neighbor data and fuzzy membership function to address missing values in classification
    Muludi, Kurnia
    Setianingsih, Revita
    Sholehurrohman, Ridho
    Junaidi, Akmal
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [49] Deep imputation of missing values in time series health data: A review with benchmarking
    Kazijevs, Maksims
    Samad, Manar D.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 144
  • [50] Cyclic Gate Recurrent Neural Networks for Time Series Data with Missing Values
    Philip B. Weerakody
    Kok Wai Wong
    Guanjin Wang
    Neural Processing Letters, 2023, 55 : 1527 - 1554