Test-Cost Sensitive Classification on Data with Missing Values in the Limited Time

被引:0
|
作者
Wan, Chang [1 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou, Guangdong, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Much work [1] [2] has been done to deal with the test-cost sensitive learning OH data with missing values. Most of the previous works only focus on the cost while ignore the importance of time In this paper, we address how to choose the unknown attributes to be tested in the limited time in order to minimize the total cost. We propose a multi-batch strategy applying on test-cost sensitive Naive Bayes classifier and evaluate its performance on several data sets. We build graphs horn attributes and it includes the vertices cost and set cost. Then we use randomized algorithm to select the unknown attributes in each testing cycle. From the results of the experiments, our algorithms significantly outperforms previous algorithms[3][4].
引用
收藏
页码:501 / 510
页数:10
相关论文
共 50 条
  • [21] A new test for monopoly with limited cost data
    Moul, Charles C.
    ECONOMICS LETTERS, 2012, 117 (03) : 891 - 894
  • [22] Classification of missing values in spatial data using spin models
    Zukovic, Milan
    Hristopulos, Dionissios T.
    PHYSICAL REVIEW E, 2009, 80 (01)
  • [23] Impact of imputation of missing values on classification error for discrete data
    Farhangfar, Alireza
    Kurgan, Lukasz
    Dy, Jennifer
    PATTERN RECOGNITION, 2008, 41 (12) : 3692 - 3705
  • [24] Simple data imputation for missing feature values in binary classification
    Chatterjee, Avishek
    Woodruff, Henry
    Vallieres, Martin
    Seuntjens, Jan
    MEDICAL PHYSICS, 2019, 46 (11) : 5378 - 5378
  • [25] Cost Sensitive Time-Series Classification
    Roychoudhury, Shoumik
    Ghalwash, Mohamed
    Obradovic, Zoran
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 : 495 - 511
  • [26] Efficient Utilization of Missing Data in Cost-Sensitive Learning
    Zhu, Xiaofeng
    Yang, Jianye
    Zhang, Chengyuan
    Zhang, Shichao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) : 2425 - 2436
  • [27] Adaption of the global test idea to proteomics data with missing values
    Jung, Klaus
    Dihazi, Hassan
    Bibi, Asima
    Dihazi, Gry H.
    Beissbarth, Tim
    BIOINFORMATICS, 2014, 30 (10) : 1424 - 1430
  • [28] Classification of nultivariate data with missing values using expected discriminant scores
    Kossa, W
    BETWEEN DATA SCIENCE AND APPLIED DATA ANALYSIS, 2003, : 570 - 577
  • [29] MULTICLASS SUPPORT VECTOR MACHINES FOR CLASSIFICATION OF ECG DATA WITH MISSING VALUES
    Hejazi, Maryamsadat
    Al-Haddad, S. A. R.
    Singh, Yashwant Prasad
    Hashim, Shaiful Jahari
    Aziz, Ahmad Fazli Abdul
    APPLIED ARTIFICIAL INTELLIGENCE, 2015, 29 (07) : 660 - 674
  • [30] Effectiveness of Simple Data Imputation for Missing Feature Values in Binary Classification
    Chatterjee, A.
    Woodruff, H.
    Lobbes, M.
    van Wijk, Y.
    Beuque, M.
    Seuntjens, J.
    Lambin, P.
    MEDICAL PHYSICS, 2020, 47 (06) : E609 - E609