DATA SAMPLING METHODS FOR IMBALANCED CLASSIFICATION: A RANDOM FOREST STUDY FOR PREDICTING TREATMENT SWITCHING IN MULTIPLE SCLEROSIS

被引:0
|
作者
Li, J. [1 ]
Huang, Y. [1 ]
Aparasu, R. R. [1 ]
机构
[1] Univ Houston, Coll Pharm, Houston, TX 77030 USA
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
MSR32
引用
收藏
页码:S524 / S524
页数:1
相关论文
共 50 条
  • [31] A Comprehensive Study on Ensemble-Based Imbalanced Data Classification Methods for Bankruptcy Data
    UlagaPriya, K.
    Pushpa, S.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, : 800 - 804
  • [32] Two-Phase Stratified Random Forest for Paddy Growth Phase Classification: A Case of Imbalanced Data
    Suryono, Hady
    Kuswanto, Heri
    Iriawan, Nur
    SUSTAINABILITY, 2022, 14 (22)
  • [33] Alterations to the Bootstrapping Process Within Random Forest: A Case Study on Imbalanced Bioinformatics Data
    Khoshgoftaar, Taghi M.
    Fazelpour, Alireza
    Dittman, David J.
    Napolitano, Amri
    2015 IEEE 16TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2015, : 342 - 348
  • [34] A hybrid sampling algorithm combining M-SMOTE and ENN based on Random forest for medical imbalanced data
    Xu, Zhaozhao
    Shen, Derong
    Nie, Tiezheng
    Kou, Yue
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 107
  • [35] Classification of Real Imbalanced Cardiovascular Data Using Feature Selection and Sampling Methods: A Case Study with Neural Networks and Logistic Regression
    Bektas, Jale
    Ibrikci, Turgay
    Ozcan, Ismail Turkay
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2017, 26 (06)
  • [36] Comparing Random Forest with Logistic Regression for Predicting Class-Imbalanced Civil War Onset Data: A Comment
    Wang, Yu
    POLITICAL ANALYSIS, 2019, 27 (01) : 107 - 110
  • [37] Comparison of IMF Selection Methods in Classification of Multiple Sclerosis EEG Data
    Kotan, Soner
    Van Schependom, Jeroen
    Nagels, Guy
    Akan, Aydin
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 228 - 231
  • [38] Predictors of treatment switching in the big multiple sclerosis data network - an update
    Spelman, T.
    Magyari, M.
    Sorensen, P. Soelberg
    Butzkueven, H.
    Van der Walt, A.
    Vukusic, S.
    Trojano, M.
    Iaffaldano, P.
    Pellegrini, F.
    Hyde, R.
    Stawiarz, L.
    Manouchehrinia, A.
    Hillert, J.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (3_SUPPL) : 671 - 672
  • [39] Breast Cancer Detection from Imbalanced Clinical Data: A Comparative Study of Sampling Methods
    Bahrami, Mahsa
    Vali, Mansour
    Kia, Hanif
    2023 30TH NATIONAL AND 8TH INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING, ICBME, 2023, : 145 - 149
  • [40] A Comparison Study of Cost-sensitive Learning and Sampling Methods on Imbalanced Data Sets
    Zhang, Jinwei
    Lu, Huijuan
    Chen, Wutao
    Lu, Yi
    ADVANCED MATERIALS AND INFORMATION TECHNOLOGY PROCESSING, PTS 1-3, 2011, 271-273 : 1291 - +