DATA SAMPLING METHODS FOR IMBALANCED CLASSIFICATION: A RANDOM FOREST STUDY FOR PREDICTING TREATMENT SWITCHING IN MULTIPLE SCLEROSIS

被引:0
|
作者
Li, J. [1 ]
Huang, Y. [1 ]
Aparasu, R. R. [1 ]
机构
[1] Univ Houston, Coll Pharm, Houston, TX 77030 USA
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
MSR32
引用
收藏
页码:S524 / S524
页数:1
相关论文
共 50 条
  • [21] Performance enrichment through parameter tuning of random forest classification for imbalanced data applications
    More, Anjali S.
    Rana, Dipti P.
    MATERIALS TODAY-PROCEEDINGS, 2022, 56 : 3585 - 3593
  • [22] Handling Imbalanced Data in Customer Churn Prediction Using Combined Sampling and Weighted Random Forest
    Effendy, Veronikha
    Adiwijaya
    Baizal, Z. K. A.
    2014 2ND INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOICT), 2014,
  • [23] Cluster-based Under-sampling with Random Forest for Multi-Class Imbalanced Classification
    Arafat, Md. Yasir
    Hoque, Sabera
    Farid, Dewan Md.
    2017 11TH INTERNATIONAL CONFERENCE ON SOFTWARE, KNOWLEDGE, INFORMATION MANAGEMENT AND APPLICATIONS (SKIMA), 2017,
  • [24] Advanced EOR screening methodology based on LightGBM and random forest: A classification problem with imbalanced data
    Seyyedattar, Masoud
    Afshar, Majid
    Zendehboudi, Sohrab
    Butt, Stephen
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2025, 103 (02): : 846 - 867
  • [25] An Optimized Random Forest Classification Method for Processing Imbalanced Data Sets of Alzheimer's Disease
    Sun, Haijing
    Wang, Anna
    Feng, Yun
    Liu, Chen
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1670 - 1673
  • [26] Multi-class random forest model to classify wastewater treatment imbalanced data
    Distefano, Veronica
    Palma, Monica
    De Iaco, Sandra
    SOCIO-ECONOMIC PLANNING SCIENCES, 2024, 95
  • [27] Predictors of treatment switching in the Big Multiple Sclerosis Data Network
    Spelman, Tim
    Magyari, Melinda
    Butzkueven, Helmut
    van der Walt, Anneke
    Vukusic, Sandra
    Trojano, Maria
    Iaffaldano, Pietro
    Horakova, Dana
    Drahota, Jiri
    Pellegrini, Fabio
    Hyde, Robert
    Duquette, Pierre
    Lechner-Scott, Jeannette
    Sajedi, Seyed Aidin
    Lalive, Patrice
    Shaygannejad, Vahid
    Ozakbas, Serkan
    Eichau, Sara
    Alroughani, Raed
    Terzi, Murat
    Girard, Marc
    Kalincik, Tomas
    Grand'Maison, Francois
    Skibina, Olga
    Khoury, Samia J.
    Yamout, Bassem
    Sa, Maria Jose
    Gerlach, Oliver
    Blanco, Yolanda
    Karabudak, Rana
    Oreja-Guevara, Celia
    Altintas, Ayse
    Hughes, Stella
    Mccombe, Pamela
    Ampapa, Radek
    de Gans, Koen
    Mcguigan, Chris
    Soysal, Aysun
    Prevost, Julie
    John, Nevin
    Inshasi, Jihad
    Stawiarz, Leszek
    Manouchehrinia, Ali
    Forsberg, Lars
    Sellebjerg, Finn
    Glaser, Anna
    Pontieri, Luigi
    Joensen, Hanna
    Rasmussen, Peter Vestergaard
    Sejbaek, Tobias
    FRONTIERS IN NEUROLOGY, 2023, 14
  • [28] Classification of Travel Data with Multiple Sensor Information using Random Forest
    Shafique, Muhammad Awais
    Hato, Eiji
    19TH EURO WORKING GROUP ON TRANSPORTATION MEETING (EWGT2016), 2017, 22 : 144 - 153
  • [29] Comparing Random Forest with Logistic Regression for Predicting Class-Imbalanced Civil War Onset Data
    Muchlinski, David
    Siroky, David
    He, Jingrui
    Kocher, Matthew
    POLITICAL ANALYSIS, 2016, 24 (01) : 87 - 103
  • [30] A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets
    Rivera, William A.
    Xanthopoulos, Petros
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 66 : 124 - 135