A phosphine detection matrix using nanostructure modified porous silicon gas sensors

被引:56
|
作者
Ozdemir, Serdar [1 ]
Gole, James L. [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2010年 / 151卷 / 01期
基金
美国国家科学基金会;
关键词
Gas sensor; Porous silicon; Metal oxide nanostructures; Phosphine dete ction; INTERFACES; COPPER; FILMS;
D O I
10.1016/j.snb.2010.08.016
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We discuss the selective modification of porous silicon (PS) conductometric gas sensors for phosphine detection. Tin, nickel, copper and gold are electrolessly deposited onto nanopore covered microporous porous silicon surfaces forming SnOx, NiO, CuxO and AuxO nanostructured centers. Further studies have also been carried out with nanostructured alumina coated porous silicon. The porous silicon surface is analyzed for the metal oxides considered using XPS measurements. These experiments demonstrate that the indicated metals are deposited to the nanopore covered micropores of the PS interface and are oxidized to form metal oxide sites. The sensitivity change of these modified porous silicon gas sensor surfaces has been measured under 1-5 ppm PH3 exposure. An improved sensitivity, of the order of 5 times that of untreated porous silicon, for 1 ppm exposure is observed. The selection of the nanostructure deposition is based on the hard to soft acid character of the nanostructured deposit and its subsequent effect on the physisorption of PH3, an intermediate base. The observed behavior follows an inverse pattern IHSAB to the hard soft acid-base concept. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:274 / 280
页数:7
相关论文
共 50 条
  • [21] The role of quantum confinement in porous silicon gas sensors
    Ninno, D
    Buonocore, F
    Cantele, G
    Iadonisi, G
    Di Francia, G
    SENSORS AND MICROSYSTEMS, 2000, : 134 - 138
  • [22] Porous Silicon Gas Sensors: The Role of the Layer Thickness and the Silicon Conductivity
    Ramirez-Gonzalez, Francisco
    Garcia-Salgado, Godofredo
    Rosendo, Enrique
    Diaz, Tomas
    Nieto-Caballero, Fabiola
    Coyopol, Antonio
    Romano, Roman
    Luna, Alberto
    Monfil, Karim
    Gastellou, Erick
    SENSORS, 2020, 20 (17) : 1 - 10
  • [23] DIFFUSION OF PHOSPHORUS INTO SILICON USING PHOSPHINE GAS AS A SOURCE
    GHOSHDASTIDAR, SN
    SOLID STATE TECHNOLOGY, 1975, 18 (11) : 37 - &
  • [24] Gas detection with a porous silicon based sensor
    Baratto, C
    Comini, E
    Faglia, G
    Sberveglieri, G
    Di Francia, G
    De Filippo, F
    La Ferrara, V
    Quercia, L
    Lancellotti, L
    SENSORS AND ACTUATORS B-CHEMICAL, 2000, 65 (1-3) : 257 - 259
  • [25] Detection of HF gas with a porous silicon interferometer
    Létant, SE
    Sailor, MJ
    ADVANCED MATERIALS, 2000, 12 (05) : 355 - +
  • [26] Effect of current density on the porous silicon preparation as gas sensors
    Kareem, Muna H.
    Hussein, Adi M. Abdul
    Hussein, Haitham Talib
    JOURNAL OF THE MECHANICAL BEHAVIOR OF MATERIALS, 2021, 30 (01) : 257 - 264
  • [27] Self-tuning porous silicon chemitransistor gas sensors
    Lazzerini, Giovanni Mattia
    Strambini, Lucanos Marsilio
    Barillaro, Giuseppe
    2013 IEEE SENSORS, 2013, : 963 - 966
  • [28] Multiparametric porous silicon gas sensors with improved quality and sensitivity
    Oton, CJ
    Pancheri, L
    Gaburro, Z
    Pavesi, L
    Baratto, C
    Faglia, G
    Sberveglieri, G
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2003, 197 (02): : 523 - 527
  • [29] A study of the gas specificity of porous silicon sensors for organic vapours
    Choi, S. -H.
    Cheng, H.
    Park, S-H.
    Kim, H. -J.
    Kim, Y. -Y.
    Lee, K. -W.
    MATERIALS SCIENCE-POLAND, 2009, 27 (02): : 603 - 610
  • [30] Role of microstructure in porous silicon gas sensors for NO2
    Gaburro, Z
    Bettotti, P
    Saiani, M
    Pavesi, L
    Pancheri, L
    Oton, CJ
    Capuj, N
    APPLIED PHYSICS LETTERS, 2004, 85 (04) : 555 - 557