Fractional optimal control of COVID-19 pandemic model with generalized Mittag-Leffler function

被引:13
|
作者
Khan, Amir [1 ,2 ]
Zarin, Rahat [3 ]
Humphries, Usa Wannasingha [1 ]
Akgul, Ali [4 ]
Saeed, Anwar [5 ]
Gul, Taza [6 ]
机构
[1] King Mongkuts Univ Technol, Fac Sci, Dept Math, Th Nburi KMUTT, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Univ Swat, Dept Math & Stat, Khyber Pakhtunkhawa, Pakistan
[3] Univ Engn & Technol, Dept Basic Sci, Peshawar, Pakistan
[4] Siirt Univ, Art & Sci Fac Sci, Dept Math, TR-56100 Siirt, Turkey
[5] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[6] City Univ Sci & Informat Technol, Math Dept, Peshawar, Pakistan
关键词
Pandemic model; Mittag-Leffler function; Stability analysis; Optimal control; Sensitivity analysis; Numerical simulations; HEPATITIS-B-VIRUS; NONLINEAR INCIDENCE; STABILITY ANALYSIS; GLOBAL STABILITY; TRANSMISSION; VACCINATION; INFECTION;
D O I
10.1186/s13662-021-03546-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a fractional COVID-19 epidemic model with a convex incidence rate. The Atangana-Baleanu fractional operator in the Caputo sense is taken into account. We establish the equilibrium points, basic reproduction number, and local stability at both the equilibrium points. The existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Toufik-Atangana scheme. Optimal control analysis is carried out to minimize the infection and maximize the susceptible people.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application
    Nisar, Kottakkaran Sooppy
    MATHEMATICS, 2019, 7 (12)
  • [32] On Fractional Calculus Operators and the Basic Analogue of Generalized Mittag-Leffler Function
    Bhadana, Krishna Gopal
    Meena, Ashok Kumar
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (03): : 835 - 842
  • [33] ON CERTAIN FRACTIONAL CALCULUS OPERATORS INVOLVING GENERALIZED MITTAG-LEFFLER FUNCTION
    Kumar, Dinesh
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2016, 3 (02): : 33 - 45
  • [34] On generalized fractional integral with multivariate Mittag-Leffler function and its applications
    Nazir, Amna
    Rahman, Gauhar
    Ali, Asad
    Naheed, Saima
    Nisar, Kottakkaran Soopy
    Albalawi, Wedad
    Zahran, Heba Y.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (11) : 9187 - 9201
  • [35] Generalized Mittag-Leffler Function Associated with Weyl Fractional Calculus Operators
    Faraj, Ahmad
    Salim, Tariq
    Sadek, Safaa
    Ismail, Jamal
    JOURNAL OF MATHEMATICS, 2013, 2013
  • [36] On the Generalized Mittag-Leffler Function and its Application in a Fractional Telegraph Equation
    Rubens Figueiredo Camargo
    Edmundo Capelas de Oliveira
    Jayme Vaz
    Mathematical Physics, Analysis and Geometry, 2012, 15 : 1 - 16
  • [37] Mittag-Leffler function and fractional differential equations
    Katarzyna Górska
    Ambra Lattanzi
    Giuseppe Dattoli
    Fractional Calculus and Applied Analysis, 2018, 21 : 220 - 236
  • [38] Fractional Calculus of a Unified Mittag-Leffler Function
    Prajapati, J. C.
    Nathwani, B. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 66 (08) : 1267 - 1280
  • [39] The Role of the Mittag-Leffler Function in Fractional Modeling
    Rogosin, Sergei
    MATHEMATICS, 2015, 3 (02) : 368 - 381
  • [40] Mittag-Leffler function for discrete fractional modelling
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Zeng, Sheng-Da
    Luo, Wei-Hua
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 99 - 102