Fractional optimal control of COVID-19 pandemic model with generalized Mittag-Leffler function

被引:13
|
作者
Khan, Amir [1 ,2 ]
Zarin, Rahat [3 ]
Humphries, Usa Wannasingha [1 ]
Akgul, Ali [4 ]
Saeed, Anwar [5 ]
Gul, Taza [6 ]
机构
[1] King Mongkuts Univ Technol, Fac Sci, Dept Math, Th Nburi KMUTT, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Univ Swat, Dept Math & Stat, Khyber Pakhtunkhawa, Pakistan
[3] Univ Engn & Technol, Dept Basic Sci, Peshawar, Pakistan
[4] Siirt Univ, Art & Sci Fac Sci, Dept Math, TR-56100 Siirt, Turkey
[5] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[6] City Univ Sci & Informat Technol, Math Dept, Peshawar, Pakistan
关键词
Pandemic model; Mittag-Leffler function; Stability analysis; Optimal control; Sensitivity analysis; Numerical simulations; HEPATITIS-B-VIRUS; NONLINEAR INCIDENCE; STABILITY ANALYSIS; GLOBAL STABILITY; TRANSMISSION; VACCINATION; INFECTION;
D O I
10.1186/s13662-021-03546-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a fractional COVID-19 epidemic model with a convex incidence rate. The Atangana-Baleanu fractional operator in the Caputo sense is taken into account. We establish the equilibrium points, basic reproduction number, and local stability at both the equilibrium points. The existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Toufik-Atangana scheme. Optimal control analysis is carried out to minimize the infection and maximize the susceptible people.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Note on generalized Mittag-Leffler function
    Desai, Rachana
    Salehbhai, I. A.
    Shukla, A. K.
    SPRINGERPLUS, 2016, 5
  • [22] On fractional derivatives with generalized Mittag-Leffler kernels
    Thabet Abdeljawad
    Dumitru Baleanu
    Advances in Difference Equations, 2018
  • [23] Fractional derivatives of the generalized Mittag-Leffler functions
    Denghao Pang
    Wei Jiang
    Azmat U. K. Niazi
    Advances in Difference Equations, 2018
  • [24] Fractional derivatives of the generalized Mittag-Leffler functions
    Pang, Denghao
    Jiang, Wei
    Niazi, Azmat U. K.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [25] Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel
    Logeswari, Kumararaju
    Ravichandran, Chokkalingam
    Nisar, Kottakkaran Sooppy
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (01)
  • [26] CERTAIN RELATION OF GENERALIZED FRACTIONAL CALCULUS ASSOCIATED WITH THE GENERALIZED MITTAG-LEFFLER FUNCTION
    Gupta, Rajeev Kumar
    Shaktawat, Bhupender Singh
    Kumar, Dinesh
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2016, 15 (03): : 117 - 126
  • [27] EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION APPLIED ON FRACTIONAL INTEGRAL INEQUALITIES
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    Siddique, Muhammad Usama
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (04): : 1171 - 1184
  • [28] FRACTIONAL CALCULUS OF THE GENERALIZED MITTAG-LEFFLER (p,s,k)-FUNCTION
    Gurjar, Meena Kumari
    Chhattry, Preeti
    Shrivastava, Subhash Chandra
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2021, 20 (1-2): : 73 - 82
  • [29] On the Generalized Mittag-Leffler Function and its Application in a Fractional Telegraph Equation
    Camargo, Rubens Figueiredo
    de Oliveira, Edmundo Capelas
    Vaz, Jayme, Jr.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (01) : 1 - 16
  • [30] Fractional Ostrowski Type Inequalities via Generalized Mittag-Leffler Function
    You, Xinghua
    Farid, Ghulam
    Maheen, Kahkashan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020