Fractional optimal control of COVID-19 pandemic model with generalized Mittag-Leffler function

被引:13
|
作者
Khan, Amir [1 ,2 ]
Zarin, Rahat [3 ]
Humphries, Usa Wannasingha [1 ]
Akgul, Ali [4 ]
Saeed, Anwar [5 ]
Gul, Taza [6 ]
机构
[1] King Mongkuts Univ Technol, Fac Sci, Dept Math, Th Nburi KMUTT, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Univ Swat, Dept Math & Stat, Khyber Pakhtunkhawa, Pakistan
[3] Univ Engn & Technol, Dept Basic Sci, Peshawar, Pakistan
[4] Siirt Univ, Art & Sci Fac Sci, Dept Math, TR-56100 Siirt, Turkey
[5] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[6] City Univ Sci & Informat Technol, Math Dept, Peshawar, Pakistan
关键词
Pandemic model; Mittag-Leffler function; Stability analysis; Optimal control; Sensitivity analysis; Numerical simulations; HEPATITIS-B-VIRUS; NONLINEAR INCIDENCE; STABILITY ANALYSIS; GLOBAL STABILITY; TRANSMISSION; VACCINATION; INFECTION;
D O I
10.1186/s13662-021-03546-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a fractional COVID-19 epidemic model with a convex incidence rate. The Atangana-Baleanu fractional operator in the Caputo sense is taken into account. We establish the equilibrium points, basic reproduction number, and local stability at both the equilibrium points. The existence and uniqueness of the solution are proved by using Banach and Leray-Schauder alternative type theorems. For the fractional numerical simulations, we use the Toufik-Atangana scheme. Optimal control analysis is carried out to minimize the infection and maximize the susceptible people.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Fractional optimal control of COVID-19 pandemic model with generalized Mittag-Leffler function
    Amir Khan
    Rahat Zarin
    Usa Wannasingha Humphries
    Ali Akgül
    Anwar Saeed
    Taza Gul
    Advances in Difference Equations, 2021
  • [2] Generalized form of fractional order COVID-19 model with Mittag-Leffler kernel
    Aslam, Muhammad
    Farman, Muhammad
    Akgul, Ali
    Ahmad, Aqeel
    Sun, Meng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 8598 - 8614
  • [3] A fractional order control model for Diabetes and COVID-19 co-dynamics with Mittag-Leffler function
    Omame, Andrew
    Nwajeri, Ugochukwu K. K.
    Abbas, M.
    Onyenegecha, Chibueze P. P.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (10) : 7619 - 7635
  • [4] A fractional order Covid-19 epidemic model with Mittag-Leffler kernel
    Khan, Hasib
    Ibrahim, Muhammad
    Abdel-Aty, Abdel-Haleem
    Khashan, M. Motawi
    Khan, Farhat Ali
    Khan, Aziz
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [5] On the generalized fractional integrals of the generalized Mittag-Leffler function
    Ahmed, Shakeel
    SPRINGERPLUS, 2014, 3
  • [6] Correction to: A Fractional Order Covid-19 Epidemic Model with Mittag-Leffler Kernel
    H. Khan
    M. Ibrahim
    A. Khan
    O. Tunç
    Th. Abdeljawad
    Journal of Mathematical Sciences, 2023, 273 (2) : 332 - 332
  • [7] Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel
    Farman, Muhammad
    Akgul, Ali
    Nisar, Kottakkaran Sooppy
    Ahmad, Dilshad
    Ahmad, Aqeel
    Kamangar, Sarfaraz
    Saleel, C. Ahamed
    AIMS MATHEMATICS, 2022, 7 (01): : 756 - 783
  • [8] Generalized Mittag-Leffler function and generalized fractional calculus operators
    Kilbas, AA
    Saigo, M
    Saxena, RK
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (01) : 31 - 49
  • [9] Fractional differential equations for the generalized Mittag-Leffler function
    Agarwal, Praveen
    Al-Mdallal, Qasem
    Cho, Yeol Je
    Jain, Shilpi
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [10] Fractional Differintegral Operators of The Generalized Mittag-Leffler Function
    Gupta, Anjali
    Parihar, C. L.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2015, 33 (01): : 137 - 144