GROUND STATE TRAVELLING WAVES IN INFINITE LATTICES

被引:2
|
作者
Zhang, Luyu [1 ]
Ma, Shiwang [1 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
FPU lattice; ground state wave; Nehari manifold; SOLITARY WAVES; EXISTENCE;
D O I
10.1016/S0252-9602(16)30039-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider FPU lattices with particles of unit mass. The dynamics of the system is described by the infinite system of second order differential equations q(n) = U'(q(n+1) - q(n)) - U'(q(n) - q(n-1)), n is an element of Z, where q(n) denotes the displacement of the n-th lattice site and U is the potential of interaction between two adjacent particles. Inspired by previous work due to Szulkin and Weth (Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822), we investigate the existence of solitary ground waves, i.e., nontrivial solutions with least possible energy.
引用
收藏
页码:782 / 790
页数:9
相关论文
共 50 条
  • [41] Particles dynamics in travelling optical lattices
    Jakl, P.
    Arzola, A. V.
    Zemanek, P.
    Siler, M.
    Volke-Sepulveda, K.
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION VII, 2010, 7762
  • [42] Semi-infinite travelling waves arising in a general reaction-diffusion Stefan model
    Fadai, Nabil T.
    NONLINEARITY, 2021, 34 (02) : 725 - 743
  • [43] TRAVELLING BREAKING WAVES
    Koshkarbayev, N. M.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2023, 16 (02): : 49 - 58
  • [44] TRAVELLING PLANETARY WAVES
    DELAND, RJ
    TELLUS, 1964, 16 (02): : 271 - 273
  • [45] The ground state solutions of superfluid Fermi gas in optical lattices
    Bai Xiao-Dong
    Liu Rui-Han
    Liu Lu
    Tang Rong-An
    Xue Ju-Kui
    ACTA PHYSICA SINICA, 2010, 59 (11) : 7581 - 7585
  • [46] GROUND-STATE ENERGIES OF ANTI-FERROMAGNETIC LATTICES
    VANDENBROEK, PM
    CASPERS, WJ
    WILLEMSE, MWM
    PHYSICA A, 1980, 104 (1-2): : 298 - 308
  • [47] Asymptotics and Uniqueness of Travelling Waves for Non-Monotone Delayed Systems on 2D Lattices
    Yu, Zhi-Xian
    Mei, Ming
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (03): : 659 - 672
  • [48] A PARTICLE GROUND-STATE IN THE INFINITE SQUARE-WELL
    LU, YJ
    HOU, XH
    AMERICAN JOURNAL OF PHYSICS, 1986, 54 (08) : 738 - 738
  • [49] The ground state problem in the infinite-U Hubbard model
    E. V. Kuz’min
    Physics of the Solid State, 1997, 39 : 169 - 178
  • [50] The ground state problem in the infinite-U Hubbard model
    Kuzmin, EV
    PHYSICS OF THE SOLID STATE, 1997, 39 (02) : 169 - 178